
Flask-Blogging Documentation
Release 1.0.1

Gouthaman Balaraman

Jul 22, 2017

Contents

1 Quick Start Example 3

2 Configuring your Application 5
2.1 Models from SQLAStorage . 7
2.2 Adding Custom Markdown Extensions . 7
2.3 Extending using Markdown Metadata . 7
2.4 Extending using the plugin framework . 7

3 Configuration Variables 9

4 Blog Views 11

5 Permissions 13

6 Screenshots 15
6.1 Blog Page . 15
6.2 Blog Editor . 16

7 Useful Tips 17

8 Release Notes 19

9 Compatibility Notes 23

10 API Documentation 25
10.1 Module contents . 25
10.2 Submodules . 25
10.3 flask_blogging.engine module . 25
10.4 flask_blogging.processor module . 26
10.5 flask_blogging.sqlastorage module . 27
10.6 flask_blogging.storage module . 29
10.7 flask_blogging.views module . 30
10.8 flask_blogging.forms module . 30
10.9 flask_blogging.signals module . 31

11 Contributors 35

Python Module Index 37

i

ii

Flask-Blogging Documentation, Release 1.0.1

Flask-Blogging is a Flask extension for adding Markdown based blog support to your site. It provides a flexible
mechanism to store the data in the database of your choice. It is meant to work with the authentication provided by
packages such as Flask-Login or Flask-Security.

The philosophy behind this extension is to provide a lean app based on Markdown to provide blog support to your
existing web application. If you already have a web app and you need to have a blog to communicate with your user
or to promote your site through content based marketing, then Flask-Blogging would help you quickly get a blog up
and running.

Out of the box, Flask-Blogging has support for the following:

• Bootstrap based site

• Markdown based blog editor

• Upload and manage static assets for the blog

• Models to store blog

• Authentication of User’s choice

• Sitemap, ATOM support

• Disqus support for comments

• Google analytics for usage tracking

• Open Graph meta tags

• Permissions enabled to control which users can create/edit blogs

• Integrated Flask-Cache based caching for optimization

• Well documented, tested, and extensible design

• DynamoDB storage for use in AWS

• Quick Start Example

• Configuring your Application

– Models from SQLAStorage

– Adding Custom Markdown Extensions

– Extending using Markdown Metadata

– Extending using the plugin framework

• Configuration Variables

• Blog Views

• Permissions

• Screenshots

– Blog Page

– Blog Editor

• Useful Tips

• Release Notes

• Compatibility Notes

Contents 1

https://flask-login.readthedocs.org/en/latest/
https://pythonhosted.org/Flask-Security/

Flask-Blogging Documentation, Release 1.0.1

• API Documentation

– Module contents

– Submodules

– flask_blogging.engine module

– flask_blogging.processor module

– flask_blogging.sqlastorage module

– flask_blogging.storage module

– flask_blogging.views module

– flask_blogging.forms module

– flask_blogging.signals module

• Contributors

2 Contents

CHAPTER 1

Quick Start Example

from flask import Flask, render_template_string, redirect
from sqlalchemy import create_engine, MetaData
from flask_login import UserMixin, LoginManager, login_user, logout_user
from flask_blogging import SQLAStorage, BloggingEngine

app = Flask(__name__)
app.config["SECRET_KEY"] = "secret" # for WTF-forms and login
app.config["BLOGGING_URL_PREFIX"] = "/blog"
app.config["BLOGGING_DISQUS_SITENAME"] = "test"
app.config["BLOGGING_SITEURL"] = "http://localhost:8000"
app.config["BLOGGING_SITENAME"] = "My Site"
app.config["BLOGGING_KEYWORDS"] = ["blog", "meta", "keywords"]
app.config["FILEUPLOAD_IMG_FOLDER"] = "fileupload"
app.config["FILEUPLOAD_PREFIX"] = "/fileupload"
app.config["FILEUPLOAD_ALLOWED_EXTENSIONS"] = ["png", "jpg", "jpeg", "gif"]

extensions
engine = create_engine('sqlite:////tmp/blog.db')
meta = MetaData()
sql_storage = SQLAStorage(engine, metadata=meta)
blog_engine = BloggingEngine(app, sql_storage)
login_manager = LoginManager(app)
meta.create_all(bind=engine)

class User(UserMixin):
def __init__(self, user_id):

self.id = user_id

def get_name(self):
return "Paul Dirac" # typically the user's name

@login_manager.user_loader
@blog_engine.user_loader
def load_user(user_id):

3

Flask-Blogging Documentation, Release 1.0.1

return User(user_id)

index_template = """
<!DOCTYPE html>
<html>

<head> </head>
<body>

{% if current_user.is_authenticated %}
 Logout

{% else %}
 Login

{% endif %}
 Blog
 Sitemap
 ATOM
 FileUpload

</body>
</html>
"""

@app.route("/")
def index():

return render_template_string(index_template)

@app.route("/login/")
def login():

user = User("testuser")
login_user(user)
return redirect("/blog")

@app.route("/logout/")
def logout():

logout_user()
return redirect("/")

if __name__ == "__main__":
app.run(debug=True, port=8000, use_reloader=True)

The key components required to get the blog hooked is explained below. Please note that as of Flask-Login 0.3.0 the
is_authenticated attribute in the UserMixin is a property and not a method. Please use the appropriate option
based on your Flask-Login version. You can find more examples here in the Flask-Blogging github project page.

4 Chapter 1. Quick Start Example

https://github.com/gouthambs/Flask-Blogging/tree/master/example

CHAPTER 2

Configuring your Application

The BloggingEngine class is the gateway to configure blogging support to your web app. You should create the
BloggingEngine instance like this:

blogging_engine = BloggingEngine()
blogging_engine.init_app(app, storage)

You also need to pick the storage for blog. That can be done as:

from sqlalchemy import create_engine, MetaData

engine = create_engine("sqlite:////tmp/sqlite.db")
meta = MetaData()
storage = SQLAStorage(engine, metadata=meta)
meta.create_all(bind=engine)

Here we have created the storage, and created all the tables in the metadata. Once you have created the blogging
engine, storage, and all the tables in the storage, you can connect with your app using the init_app method as
shown below:

blogging_engine.init_app(app, storage)

If you are using Flask-Sqlalchemy, you can do the following:

from flask_sqlalchemy import SQLAlchemy

db = SQLAlchemy(app)
storage = SQLAStorage(db=db)
db.create_all()

One of the changes in version 0.3.1 is the ability for the user to provide the metadata object. This has the benefit
of the table creation being passed to the user. Also, this gives the user the ability to use the common metadata object,
and hence helps with the tables showing up in migrations while using Alembic.

As of version 0.5.2, support for the multi database scenario under Flask-SQLAlchemy was added. When we have a
multiple database scenario, one can use the bind keyword in SQLAStorage to specify the database to bind to, as

5

Flask-Blogging Documentation, Release 1.0.1

shown below:

config value
SQLALCHEMY_BINDS = {

'blog': "sqlite:////tmp/blog.db"),
'security': "sqlite:////tmp/security.db")

}

The storage can be initialised as:

db = SQLAlchemy(app)
storage = SQLAStorage(db=db, bind="blog")
db.create_all()

As of version 0.4.0, Flask-Cache integration is supported. In order to use caching in the blogging engine, you need to
pass the Cache instance to the BloggingEngine as:

from flask_cache import Cache
from flask_blogging import BloggingEngine

blogging_engine = BloggingEngine(app, storage, cache)

Flask-Blogging lets the developer pick the authentication that is suitable, and hence requires her to provide a way to
load user information. You will need to provide a BloggingEngine.user_loader callback. This callback is used to load
the user from the user_id that is stored for each blog post. Just as in Flask-Login, it should take the unicode user_id
of a user, and return the corresponding user object. For example:

@blogging_engine.user_loader
def load_user(userid):

return User.get(userid)

For the blog to have a readable display name, the User class must implement either the get_name method or the
__str__ method.

The BloggingEngine accepts an optional extensions argument. This is a list of Markdown extensions objects
to be used during the markdown processing step.

As of version 0.6.0, a plugin interface is available to add new functionality. Custom processes can be added to the
posts by subscribing to the post_process_before and post_process_after signals, and adding new
functionality to it.

The BloggingEngine also accepts post_processor argument, which can be used to provide a custom post
processor object to handle the processing of Markdown text. One way to do this would be to inherit the default
PostProcessor object and override process method.

In version 0.4.1 and onwards, the BloggingEngine object can be accessed from your app as follows:

engine = app.extensions["blogging"]

The engine method also exposes a get_posts method to get the recent posts for display of posts in other views.

In earlier versions the same can be done using the key FLASK_BLOGGING_ENGINE instead of blogging. The use
of FLASK_BLOGGING_ENGINE key will be deprecated moving forward.

6 Chapter 2. Configuring your Application

Flask-Blogging Documentation, Release 1.0.1

Models from SQLAStorage

SQLAlchemy ORM models for the SQLAStorage can be accessed after configurtion of the SQLAStorage object. Here
is a quick example:

storage = SQLAStorage(db=db)
from flask_blogging.sqlastorage import Post, Tag # Has to be after SQLAStorage
→˓initialization

These ORM models can be extremely convenient to use with Flask-Admin.

Adding Custom Markdown Extensions

One can provide additional MarkDown extensions to the blogging engine. One example usage is adding the
codehilite MarkDown extension. Additional extensions should be passed as a list while initializing the
BlogggingEngine as shown:

from markdown.extensions.codehilite import CodeHiliteExtension

extn1 = CodeHiliteExtension({})
blogging_engine = BloggingEngine(app, storage,extensions=[extn1])

This allows for the MarkDown to be processed using CodeHilite along with the default extensions. Please note that
one would also need to include necessary static files in the view, such as for code highlighting to work.

Extending using Markdown Metadata

Let’s say you want to include a summary for your blog post, and have it show up along with the post. You don’t need
to modify the database or the models to accomplish this. This is in fact supported by default by way of Markdown
metadata syntax. In your blog post, you can include metadata, as shown below:

Summary: This is a short summary of the blog post
Keywords: Blog, specific, keywords

This is the much larger blog post. There are lot of things
to discuss here.

In the template page.html this metadata can be accessed as, post.meta.summary and can be populated in the
way it is desired. The same metadata for each post is also available in other template views like index.html.

If included, the first summary will be used as the page’s meta description, and Open Graph og:description.

The (optional) blog post specificvkeywords are included in the page’s meta keywords in addition to ‘‘BLOG-
GING_KEYWORDS‘‘v(if configured). Any tags are also added as meta keywords.

Extending using the plugin framework

The plugin framework is a very powerful way to modify the behavior of the blogging engine. Lets say you want to
show the top 10 most popular tag in the post. Lets show how one can do that using the plugins framework. As a first
step, we create our plugin:

2.1. Models from SQLAStorage 7

Flask-Blogging Documentation, Release 1.0.1

plugins/tag_cloud/__init__.py
from flask_blogging import signals
from flask_blogging.sqlastorage import SQLAStorage
import sqlalchemy as sqla
from sqlalchemy import func

def get_tag_data(sqla_storage):
engine = sqla_storage.engine
with engine.begin() as conn:

tag_posts_table = sqla_storage.tag_posts_table
tag_table = sqla_storage.tag_table

tag_cloud_stmt = sqla.select([
tag_table.c.text,func.count(tag_posts_table.c.tag_id)]).group_by(
tag_posts_table.c.tag_id

).where(tag_table.c.id == tag_posts_table.c.tag_id).limit(10)
tag_cloud = conn.execute(tag_cloud_stmt).fetchall()

return tag_cloud

def get_tag_cloud(app, engine, posts, meta):
if isinstance(engine.storage, SQLAStorage):

tag_cloud = get_tag_data(engine.storage)
meta["tag_cloud"] = tag_cloud

else:
raise RuntimeError("Plugin only supports SQLAStorage. Given storage"

"not supported")
return

def register(app):
signals.index_posts_fetched.connect(get_tag_cloud)
return

The register method is what is invoked in order to register the plugin. We have connected this plugin to the
index_posts_fetched signal. So when the posts are fetched to show on the index page, this signal will be fired,
and this plugin will be invoked. The plugin basically queries the table that stores the tags, and returns the tag text
and the number of times it is referenced. The data about the tag cloud we are storing in the meta["tag_cloud"]
which corresponds to the metadata variable.

Now in the index.html template, one can reference the meta.tag_cloud to access this data for display. The plugin
can be registered by setting the config variable as shown:

app.config["BLOGGING_PLUGINS"] = ["plugins.tag_cloud"]

8 Chapter 2. Configuring your Application

CHAPTER 3

Configuration Variables

The Flask-Blogging extension can be configured by setting the following app config variables. These arguments are
passed to all the views. The keys that are currently supported include:

• BLOGGING_SITENAME (str): The name of the blog to be used as the brand name. This is also used in the feed
heading and og:site_name meta tag. (default “Flask-Blogging”)

• BLOGGING_SITEURL (str): The url of the site. This is also used in the og:pulisher meta tag.

• BLOGGING_BRANDURL (str): The url of the site brand.

• BLOGGING_RENDER_TEXT (bool): Value to specify if the raw text (markdown) should be rendered to HTML.
(default True)

• BLOGGING_DISQUS_SITENAME (str): Disqus sitename for comments. A None value will disable com-
ments. (default None)

• BLOGGING_GOOGLE_ANALYTICS (str): Google analytics code for usage tracking. A None value will dis-
able google analytics. (default None)

• BLOGGING_URL_PREFIX (str) : The prefix for the URL of blog posts. A None value will have no prefix.
(default None)

• BLOGGING_FEED_LIMIT (int): The number of posts to limit to in the feed. If None, then all are shown, else
will be limited to this number. (default None)

• BLOGGING_PERMISSIONS (bool): If True, this will enable permissions for the blogging engine. With
permissions enabled, the user will need to have “blogger” Role to edit or create blog posts. Other authenticated
users will not have blog editing permissions. The concepts here derive from Flask-Principal. (default
False)

• BLOGGING_PERMISSIONNAME (str): The role name used for permissions. It is effective, if “BLOG-
GING_PERMISSIONS” is “True”. (default “blogger”)

• BLOGGING_POSTS_PER_PAGE (int): The default number of posts per index page. to be displayed per page.
(default 10)

• BLOGGING_CACHE_TIMEOUT (int): The timeout in seconds used to cache. the blog pages. (default 60)

• BLOGGING_PLUGINS (list): A list of plugins to register.

9

Flask-Blogging Documentation, Release 1.0.1

• BLOGGING_KEYWORDS (list): A list of meta keywords to include on each page.

• BLOGGING_ALLOW_FILEUPLOAD (bool): Allow static file uploads flask_fileupload

10 Chapter 3. Configuration Variables

CHAPTER 4

Blog Views

There are various views that are exposed through Flask-Blogging. The URL for the various views are:

• url_for('blogging.index') (GET): The index blog posts with the first page of articles. The meta
variable passed into the view holds values for the keys is_user_blogger, count and page.

• url_for('blogging.page_by_id', post_id=<post_id>) (GET): The blog post correspond-
ing to the post_id is retrieved. The meta variable passed into the view holds values for the keys
is_user_blogger, post_id and slug.

• url_for('blogging.posts_by_tag', tag=<tag_name>) (GET): The list of blog posts corre-
sponding to tag_name is returned. The meta variable passed into the view holds values for the keys
is_user_blogger, tag, count and page.

• url_for('blogging.posts_by_author', user_id=<user_id>) (GET): The list of blog posts
written by the author user_id is returned. The meta variable passed into the view holds values for the keys
is_user_blogger, count, user_id and pages.

• url_for('blogging.editor') (GET, POST): The blog editor is shown. This view needs authentication
and permissions (if enabled).

• url_for('blogging.delete', post_id=<post_id>) (POST): The blog post given by post_id
is deleted. This view needs authentication and permissions (if enabled).

• url_for('blogging.sitemap') (GET): The sitemap with a link to all the posts is returned.

• url_for('blogging.feed') (GET): Returns ATOM feed URL.

The view can be easily customised by the user by overriding with their own templates. The template pages that need
to be customized are:

• blogging/index.html: The blog index page used to serve index of posts, posts by tag, and posts by author

• blogging/editor.html: The blog editor page.

• blogging/page.html: The page that shows the given article.

• blogging/sitemap.xml: The sitemap for the blog posts.

11

Flask-Blogging Documentation, Release 1.0.1

12 Chapter 4. Blog Views

CHAPTER 5

Permissions

In version 0.3.0 Flask-Blogging, enables permissions based on Flask-Principal. This addresses the issue of controlling
which of the authenticated users can have access to edit or create blog posts. Permissions are enabled by setting
BLOGGING_PERMISSIONS to True. Only users that have access to Role “blogger” will have permissions to
create or edit blog posts.

13

Flask-Blogging Documentation, Release 1.0.1

14 Chapter 5. Permissions

CHAPTER 6

Screenshots

Blog Page

15

Flask-Blogging Documentation, Release 1.0.1

Blog Editor

16 Chapter 6. Screenshots

CHAPTER 7

Useful Tips

• Migrations with Alembic: (Applies to versions 0.3.0 and earlier) If you have migrations part of your project
using Alembic, or extensions such as Flask-Migrate which uses Alembic, then you have to modify the
Alembic configuration in order for it to ignore the Flask-Blogging related tables. If you don’t set these
modifications, then every time you run migrations, Alembic will not recognize the tables and mark them for
deletion. And if you happen to upgrade by mistake then all your blog tables will be deleted. What we will do
here is ask Alembic to exclude the tables used by Flask-Blogging. In your alembic.ini file, add a
line:

[alembic:exclude]
tables = tag, post, tag_posts, user_posts

If you have a value set for table_prefix argument while creating the SQLAStorage, then the table names
will contain that prefix in their names. In which case, you have to use appropriate names in the table names.

And in your env.py, we have to mark these tables as the ones to be ignored.

def exclude_tables_from_config(config_):
tables_ = config_.get("tables", None)
if tables_ is not None:

tables = tables_.split(",")
return tables

exclude_tables = exclude_tables_from_config(config.get_section('alembic:exclude'))

def include_object(object, name, type_, reflected, compare_to):
if type_ == "table" and name in exclude_tables:

return False
else:

return True

def run_migrations_online():
"""Run migrations in 'online' mode.

In this scenario we need to create an Engine
and associate a connection with the context.

17

Flask-Blogging Documentation, Release 1.0.1

"""
engine = engine_from_config(

config.get_section(config.config_ini_section),
prefix='sqlalchemy.',
poolclass=pool.NullPool)

connection = engine.connect()
context.configure(

connection=connection,
target_metadata=target_metadata,
include_object=include_object,
compare_type=True
)

try:
with context.begin_transaction():

context.run_migrations()
finally:

connection.close()

In the above, we are using include_object in context.configure(...) to be specified based on the
include_object function.

18 Chapter 7. Useful Tips

CHAPTER 8

Release Notes

• Version 1.0.1 (Release July 22, 2017)

• Expanded the example with S3Storage for Flask-FileUpload

• Post id for DynamoDB only uses lower case alphabet and numbers

• Version 1.0.0 (Release July 15, 2017)

– Added DynamoDB storage

• Version 0.9.2 (Release June 25, 2017)

– Additional fixes to automap_base in creating Post and Tag models

• Version 0.9.1 (Release June 23, 2017)

– Fixes to automap_base in creating Post and Tag models

– Some improvements to blog page generation

• Version 0.9.0 (Release Jun 17, 2017)

– Added information contained in the meta variable passed to the views as requested in (#102)

– Add missing space to Prev pagination link text (#103)

– Only render the modal of the user is a blogger (#101)

– Added Post and Tag models in sqlastorage using automap_base.

• Version 0.8.0 (Release May 16, 2017)

– Added integration with Flask-FileUpload to enable static file uploads (#99)

– Updated compatibility to latest Flask-WTF package (#96, #97)

– Updated to latest bootstrap-markdown package (#92)

– Added alert fade outs (#94)

• Version 0.7.4 (Release November 17, 2016)

– Fix Requirements.txt error

19

Flask-Blogging Documentation, Release 1.0.1

• Version 0.7.3 (Release November 6, 2016)

– Fix issues with slugs with special characters (#80)

• Version 0.7.2 (Release October 30, 2016)

– Moved default static assets to https (#78)

– Fixed the issue where post fetched wouldn’t emit when no posts exist (#76)

• Version 0.7.1 (Released July 5, 2016)

– Improvements to docs

– Added extension import transition (@slippers)

• Version 0.7.0 (Released May 25, 2016)

• Version 0.6.0 (Released January 14, 2016)

– The plugin framework for Flask-Blogging to allow users to add new features and capabilities.

• Version 0.5.2 (Released January 12, 2016)

– Added support for multiple binds for SQLAStorage

• Version 0.5.1 (Released December 6, 2015)

– Fixed the flexibility to add custom extensions to BloggingEngine.

• Version 0.5.0 (Released November 23, 2015)

– Fixed errors encountered while using Postgres database

• Version 0.4.2 (Released September 20, 2015)

– Added compatibility with Flask-Login version 0.3.0 and higher, especially to handle migration of
is_autheticated attribute from method to property. (#43)

• Version 0.4.1 (Released September 16, 2015)

– Added javascript to center images in blog page

– Added method in blogging engine to render post and fetch post.

• Version 0.4.0 (Released July 26, 2015)

– Integrated Flask-Cache to optimize blog page rendering

– Fixed a bug where anonymous user was shown the new blog button

• Version 0.3.2 (Released July 20, 2015)

– Fixed a bug in the edit post routines. The edited post would end up as a new one instead.

• Version 0.3.1 (Released July 17, 2015)

– The SQLAStorage accepts metadata, and SQLAlchemy object as inputs. This adds the ability to keep
the blogging table metadata synced up with other models. This feature adds compatibility with Alembic
autogenerate.

– Update docs to reflect the correct version number.

• Version 0.3.0 (Released July 11, 2015)

– Permissions is a new feature introduced in this version. By setting BLOGGING_PERMISSIONS to True,
one can restrict which of the users can create, edit or delete posts.

– Added BLOGGING_POSTS_PER_PAGE configuration variable to control the number of posts in a page.

20 Chapter 8. Release Notes

Flask-Blogging Documentation, Release 1.0.1

– Documented the url construction procedure.

• Version 0.2.1 (Released July 10, 2015)

– BloggingEngine init_app method can be called without having to pass a storage object.

– Hook tests to setup.py script.

• Version 0.2.0 (Released July 6, 2015)

– BloggingEngine configuration moved to the app config setting. This breaks backward compatibility.
See compatibility notes below.

– Added ability to limit number of posts shown in the feed through app configuration setting.

– The setup.py reads version from the module file. Improves version consistency.

• Version 0.1.2 (Released July 4, 2015)

– Added Python 3.4 support

• Version 0.1.1 (Released June 15, 2015)

– Fixed PEP8 errors

– Expanded SQLAStorage to include Postgres and MySQL flavors

– Added post_date and last_modified_date as arguments to the Storage.save_post(...)
call for general compatibility

• Version 0.1.0 (Released June 1, 2015)

– Initial Release

– Adds detailed documentation

– Supports Markdown based blog editor

– Has 90% code coverage in unit tests

21

Flask-Blogging Documentation, Release 1.0.1

22 Chapter 8. Release Notes

CHAPTER 9

Compatibility Notes

• Version 0.4.1:

The documented way to get the blogging engine from app is using the key blogging from app.
extensions.

• Version 0.3.1:

The SQLAStoragewill accept metadata and set it internally. The database tables will not be created
automatically. The user would need to invoke create_all in the metadata or SQLAlchemy
object in Flask-SQLAlchemy.

• Version 0.3.0:

– In this release, the templates folder was renamed from blog to blogging. To override the existing
templates, you will need to create your templates in the blogging folder.

– The blueprint name was renamed from blog_api to blogging.

• Version 0.2.0:

In this version, BloggingEngine will no longer take config argument. Instead, all con-
figuration can be done through app config variables. Another BloggingEngine parameter,
url_prefix is also available only through config variable.

23

Flask-Blogging Documentation, Release 1.0.1

24 Chapter 9. Compatibility Notes

CHAPTER 10

API Documentation

Module contents

Submodules

flask_blogging.engine module

The BloggingEngine module.

class flask_blogging.engine.BloggingEngine(app=None, storage=None,
post_processor=None, extensions=None,
cache=None, file_upload=None)

Bases: object

The BloggingEngine is the class for initializing the blog support for your web app. Here is an example usage:

from flask import Flask
from flask_blogging import BloggingEngine, SQLAStorage
from sqlalchemy import create_engine

app = Flask(__name__)
db_engine = create_engine("sqlite:////tmp/sqlite.db")
meta = MetaData()
storage = SQLAStorage(db_engine, metadata=meta)
blog_engine = BloggingEngine(app, storage)

__init__(app=None, storage=None, post_processor=None, extensions=None, cache=None,
file_upload=None)

Parameters

• app (object) – Optional app to use

25

Flask-Blogging Documentation, Release 1.0.1

• storage (object) – The blog storage instance that implements the Storage class
interface.

• post_processor (object) – (optional) The post processor object. If none provided,
the default post processor is used.

• extensions (list) – (optional) A list of markdown extensions to add to post process-
ing step.

• cache (Object) – (Optional) A Flask-Cache object to enable caching

• file_upload (Object) – (Optional) A FileUpload object from flask_fileupload ex-
tension

Returns

blogger_permission

get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False, ren-
der=False)

classmethod get_user_name(user)

init_app(app, storage=None, cache=None)
Initialize the engine.

Parameters

• app (Object) – The app to use

• storage (Object) – The blog storage instance that implements the

• cache (Object Storage class interface.) – (Optional) A Flask-Cache object to enable
caching

is_user_blogger()

process_post(post, render=True)
A high level view to create post processing. :param post: Dictionary representing the post :type post: dict
:param render: Choice if the markdown text has to be converted or not :type render: bool :return:

user_loader(callback)
The decorator for loading the user.

Parameters callback – The callback function that can load a user given a unicode user_id.

Returns The callback function

flask_blogging.processor module

class flask_blogging.processor.PostProcessor
Bases: object

classmethod all_extensions()

classmethod construct_url(post)

static create_slug(title)

static extract_images(post)

classmethod is_author(post, user)

26 Chapter 10. API Documentation

Flask-Blogging Documentation, Release 1.0.1

classmethod process(post, render=True)
This method takes the post data and renders it :param post: :param render: :return:

classmethod render_text(post)

classmethod set_custom_extensions(extensions)

flask_blogging.sqlastorage module

class flask_blogging.sqlastorage.SQLAStorage(engine=None, table_prefix=’‘, meta-
data=None, db=None, bind=None)

Bases: flask_blogging.storage.Storage

The SQLAStorage implements the interface specified by the Storage class. This class uses SQLAlchemy
to implement storage and retrieval of data from any of the databases supported by SQLAlchemy.

__init__(engine=None, table_prefix=’‘, metadata=None, db=None, bind=None)
The constructor for the SQLAStorage class.

Parameters engine – The SQLAlchemy engine instance created by calling

create_engine. One can also use Flask-SQLAlchemy, and pass the engine property. :type engine:
object :param table_prefix: (Optional) Prefix to use for the tables created

(default "").

Parameters

• metadata (object) – (Optional) The SQLAlchemy MetaData object

• db (object) – (Optional) The Flask-SQLAlchemy SQLAlchemy object

• bind – (Optional) Reference the database to bind for multiple

database scenario with binds :type bind: str

all_tables

count_posts(tag=None, user_id=None, include_draft=False)
Returns the total number of posts for the give filter

Parameters

• tag (str) – Filter by a specific tag

• user_id (str) – Filter by a specific user

• include_draft (bool) – Whether to include posts marked as draft or not

Returns The number of posts for the given filter.

delete_post(post_id)
Delete the post defined by post_id

Parameters post_id (int) – The identifier corresponding to a post

Returns Returns True if the post was successfully deleted and False otherwise.

engine

get_post_by_id(post_id)
Fetch the blog post given by post_id

Parameters post_id (str) – The post identifier for the blog post

10.5. flask_blogging.sqlastorage module 27

Flask-Blogging Documentation, Release 1.0.1

Returns If the post_id is valid, the post data is retrieved, else returns None.

get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)
Get posts given by filter criteria

Parameters

• count (int) – The number of posts to retrieve (default 10)

• offset (int) – The number of posts to offset (default 0)

• recent (bool) – Order by recent posts or not

• tag (str) – Filter by a specific tag

• user_id (str) – Filter by a specific user

• include_draft (bool) – Whether to include posts marked as draft or not

Returns A list of posts, with each element a dict containing values for the following keys: (title,
text, draft, post_date, last_modified_date). If count is None, then all the posts are returned.

metadata

post_model

post_table

save_post(title, text, user_id, tags, draft=False, post_date=None, last_modified_date=None,
meta_data=None, post_id=None)

Persist the blog post data. If post_id is None or post_id is invalid, the post must be inserted into the
storage. If post_id is a valid id, then the data must be updated.

Parameters

• title (str) – The title of the blog post

• text (str) – The text of the blog post

• user_id (str) – The user identifier

• tags (list) – A list of tags

• draft (bool) – (Optional) If the post is a draft of if needs to be published. (default
False)

• post_date (datetime.datetime) – (Optional) The date the blog was posted (de-
fault datetime.datetime.utcnow())

• last_modified_date (datetime.datetime) – (Optional) The date when blog
was last modified (default datetime.datetime.utcnow())

• post_id (str) – (Optional) The post identifier. This should be None for an insert call,
and a valid value for update. (default None)

Returns The post_id value, in case of a successful insert or update. Return None if there were
errors.

tag_model

tag_posts_table

tag_table

user_posts_table

28 Chapter 10. API Documentation

Flask-Blogging Documentation, Release 1.0.1

flask_blogging.storage module

class flask_blogging.storage.Storage
Bases: object

count_posts(tag=None, user_id=None, include_draft=False)
Returns the total number of posts for the give filter

Parameters

• tag (str) – Filter by a specific tag

• user_id (str) – Filter by a specific user

• include_draft (bool) – Whether to include posts marked as draft or not

Returns The number of posts for the given filter.

delete_post(post_id)
Delete the post defined by post_id

Parameters post_id (int) – The identifier corresponding to a post

Returns Returns True if the post was successfully deleted and False otherwise.

get_post_by_id(post_id)
Fetch the blog post given by post_id

Parameters post_id (int) – The post identifier for the blog post

Returns If the post_id is valid, the post data is retrieved,

else returns None.

get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)
Get posts given by filter criteria

Parameters

• count (int) – The number of posts to retrieve (default 10). If count is None, all posts
are returned.

• offset (int) – The number of posts to offset (default 0)

• recent (bool) – Order by recent posts or not

• tag (str) – Filter by a specific tag

• user_id (str) – Filter by a specific user

• include_draft (bool) – Whether to include posts marked as draft or not

Returns A list of posts, with each element a dict containing values for the following keys: (title,
text, draft, post_date, last_modified_date). If count is None, then all the posts are returned.

static normalize_tag(tag)

classmethod normalize_tags(tags)

save_post(title, text, user_id, tags, draft=False, post_date=None, last_modified_date=None,
meta_data=None, post_id=None)

Persist the blog post data. If post_id is None or post_id is invalid, the post must be inserted into the
storage. If post_id is a valid id, then the data must be updated.

Parameters

• title (str) – The title of the blog post

10.6. flask_blogging.storage module 29

Flask-Blogging Documentation, Release 1.0.1

• text (str) – The text of the blog post

• user_id (str) – The user identifier

• tags (list) – A list of tags

• draft (bool) – If the post is a draft of if needs to be published.

• post_date (datetime.datetime) – (Optional) The date the blog was posted (de-
fault datetime.datetime.utcnow())

• last_modified_date (datetime.datetime) – (Optional) The date when blog
was last modified (default datetime.datetime.utcnow())

• meta_data (dict) – The meta data for the blog post

• post_id (int) – The post identifier. This should be None for an insert call, and a valid
value for update.

Returns The post_id value, in case of a successful insert or update.

Return None if there were errors.

flask_blogging.views module

flask_blogging.views.cached_func(blogging_engine, func)

flask_blogging.views.create_blueprint(import_name, blogging_engine)

flask_blogging.views.delete(*args, **kwargs)

flask_blogging.views.editor(*args, **kwargs)

flask_blogging.views.feed()

flask_blogging.views.index(count, page)
Serves the page with a list of blog posts

Parameters

• count –

• offset –

Returns

flask_blogging.views.page_by_id(post_id, slug)

flask_blogging.views.posts_by_author(user_id, count, page)

flask_blogging.views.posts_by_tag(tag, count, page)

flask_blogging.views.sitemap()

flask_blogging.views.unless(blogging_engine)

flask_blogging.forms module

class flask_blogging.forms.BlogEditor(formdata=<object object>, **kwargs)

draft = <UnboundField(BooleanField, (‘draft’,), {‘default’: False})>

30 Chapter 10. API Documentation

Flask-Blogging Documentation, Release 1.0.1

submit = <UnboundField(SubmitField, (‘submit’,), {})>

tags = <UnboundField(StringField, (‘tags’,), {‘validators’: [<wtforms.validators.DataRequired object>]})>

text = <UnboundField(TextAreaField, (‘text’,), {‘validators’: [<wtforms.validators.DataRequired object>]})>

title = <UnboundField(StringField, (‘title’,), {‘validators’: [<wtforms.validators.DataRequired object>]})>

flask_blogging.signals module

The flask_blogging signals module

flask_blogging.signals = <module ‘flask_blogging.signals’ from ‘/home/docs/checkouts/readthedocs.org/user_builds/flask-blogging/checkouts/v1.0.1/flask_blogging/signals.pyc’>
The flask_blogging signals module

flask_blogging.signals.engine_initialised = <blinker.base.NamedSignal object at 0x7fb70bddf190; ‘engine_initialised’>
Signal send by the BloggingEngine after the object is initialized. The arguments passed by the signal are:

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

flask_blogging.signals.post_processed = <blinker.base.NamedSignal object at 0x7fb70bddf1d0; ‘post_processed’>
Signal sent when a post is processed (i.e., the markdown is converted to html text). The arguments passed along
with this signal are:

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• post (dict) – The post object which was processed

• render (bool) – Flag to denote if the post is to be rendered or not

flask_blogging.signals.page_by_id_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf210; ‘page_by_id_fetched’>
Signal sent when a blog page specified by id is fetched, and prior to the post being processed.

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• post (dict) – The post object which was fetched

• meta (dict) – The metadata associated with that page

flask_blogging.signals.page_by_id_processed = <blinker.base.NamedSignal object at 0x7fb70bddf250; ‘page_by_id_generated’>
Signal sent when a blog page specified by id is fetched, and prior to the post being processed.

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• post (dict) – The post object which was processed

• meta (dict) – The metadata associated with that page

flask_blogging.signals.posts_by_tag_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf290; ‘posts_by_tag_fetched’>
Signal sent when posts are fetched for a given tag but before processing

10.9. flask_blogging.signals module 31

Flask-Blogging Documentation, Release 1.0.1

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched with a given tag

• meta (dict) – The metadata associated with that page

flask_blogging.signals.posts_by_tag_processed = <blinker.base.NamedSignal object at 0x7fb70bddf2d0; ‘posts_by_tag_generated’>
Signal sent after posts for a given tag were fetched and processed

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched and processed with a given tag

• meta (dict) – The metadata associated with that page

flask_blogging.signals.posts_by_author_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf310; ‘posts_by_author_fetched’>
Signal sent after posts by an author were fetched but before processing

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched with a given author

• meta (dict) – The metadata associated with that page

flask_blogging.signals.posts_by_author_processed = <blinker.base.NamedSignal object at 0x7fb70bddf350; ‘posts_by_author_generated’>
Signal sent after posts by an author were fetched and processed

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched and processed with a given author

• meta (dict) – The metadata associated with that page

flask_blogging.signals.index_posts_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf390; ‘index_posts_fetched’>
Signal sent after the posts for the index page are fetched

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched for the index page

• meta (dict) – The metadata associated with that page

flask_blogging.signals.index_posts_processed = <blinker.base.NamedSignal object at 0x7fb70bddf3d0; ‘index_posts_processed’>
Signal sent after the posts for the index page are fetched and processed

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

32 Chapter 10. API Documentation

Flask-Blogging Documentation, Release 1.0.1

• posts (list) – Lists of post fetched and processed with a given author

• meta (dict) – The metadata associated with that page

flask_blogging.signals.feed_posts_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf410; ‘feed_posts_fetched’>
Signal send after feed posts are fetched

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched and processed with a given author

flask_blogging.signals.feed_posts_processed = <blinker.base.NamedSignal object at 0x7fb70bddf450; ‘feed_posts_processed’>
Signal send after feed posts are processed

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• feed (list) – Feed of post fetched and processed

flask_blogging.signals.sitemap_posts_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf490; ‘sitemap_posts_fetched’>
Signal send after posts are fetched

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched and processed with a given author

flask_blogging.signals.sitemap_posts_processed = <blinker.base.NamedSignal object at 0x7fb70bddf4d0; ‘sitemap_posts_processed’>
Signal send after posts are fetched and processed

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• posts (list) – Lists of post fetched and processed with a given author

flask_blogging.signals.editor_post_saved = <blinker.base.NamedSignal object at 0x7fb70bddf510; ‘editor_post_saved’>
Signal sent after a post was saved during the POST request

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• post_id (int) – The id of the post that was deleted

• user (object) – The user object

• post (object) – The post that was deleted

flask_blogging.signals.editor_get_fetched = <blinker.base.NamedSignal object at 0x7fb70bddf550; ‘editor_get_fetched’>
Signal sent after fetching the post during the GET request

Parameters

• app (object) – The Flask app which is the sender

10.9. flask_blogging.signals module 33

Flask-Blogging Documentation, Release 1.0.1

• engine (object) – The blogging engine that was initialized

• post_id (int) – The id of the post that was deleted

• form (object) – The form prepared for the editor display

flask_blogging.signals.post_deleted = <blinker.base.NamedSignal object at 0x7fb70bddf590; ‘post_deleted’>
The signal sent after the post is deleted.

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• post_id (int) – The id of the post that was deleted

• post (object) – The post that was deleted

flask_blogging.signals.blueprint_created = <blinker.base.NamedSignal object at 0x7fb70bddf5d0; ‘blueprint_created’>
The signal sent after the blueprint is created. A good time to add other views to the blueprint.

Parameters

• app (object) – The Flask app which is the sender

• engine (object) – The blogging engine that was initialized

• blueprint (object) – The blog app blueprint

flask_blogging.signals.sqla_initialized = <blinker.base.NamedSignal object at 0x7fb70bddf610; ‘sqla_initialized’>
Signal sent after the SQLAStorage object is initialized

Parameters

• sqlastorage (object) – The SQLAStorage object

• engine (object) – The blogging engine that was initialized

• table_prefix (str) – The prefix to use for tables

• meta (object) – The metadata for the database

• bind (object) – The bind value in the multiple db scenario.

34 Chapter 10. API Documentation

CHAPTER 11

Contributors

• Gouthaman Balaraman

• adilosa

• slippers

• Sundar Raman G

• Arthur Holzner

• Sean Pianka

• Matt Brookes

35

https://github.com/gouthambs/
https://github.com/adilosa/
https://github.com/slippers/
https://github.com/gsraman
https://github.com/Speedy1991
https://github.com/seanpianka
https://github.com/mbrookes

Flask-Blogging Documentation, Release 1.0.1

36 Chapter 11. Contributors

Python Module Index

f
flask_blogging, 25
flask_blogging.engine, 25
flask_blogging.forms, 30
flask_blogging.signals, 31
flask_blogging.sqlastorage, 27
flask_blogging.storage, 29
flask_blogging.views, 30

37

Flask-Blogging Documentation, Release 1.0.1

38 Python Module Index

Index

Symbols
__init__() (flask_blogging.engine.BloggingEngine

method), 25
__init__() (flask_blogging.sqlastorage.SQLAStorage

method), 27

A
all_extensions() (flask_blogging.processor.PostProcessor

class method), 26
all_tables (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 27

B
BlogEditor (class in flask_blogging.forms), 30
blogger_permission (flask_blogging.engine.BloggingEngine

attribute), 26
BloggingEngine (class in flask_blogging.engine), 25
blueprint_created (in module flask_blogging.signals), 34

C
cached_func() (in module flask_blogging.views), 30
construct_url() (flask_blogging.processor.PostProcessor

class method), 26
count_posts() (flask_blogging.sqlastorage.SQLAStorage

method), 27
count_posts() (flask_blogging.storage.Storage method),

29
create_blueprint() (in module flask_blogging.views), 30
create_slug() (flask_blogging.processor.PostProcessor

static method), 26

D
delete() (in module flask_blogging.views), 30
delete_post() (flask_blogging.sqlastorage.SQLAStorage

method), 27
delete_post() (flask_blogging.storage.Storage method),

29
draft (flask_blogging.forms.BlogEditor attribute), 30

E
editor() (in module flask_blogging.views), 30
editor_get_fetched (in module flask_blogging.signals), 33
editor_post_saved (in module flask_blogging.signals), 33
engine (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 27
engine_initialised (in module flask_blogging.signals), 31
extract_images() (flask_blogging.processor.PostProcessor

static method), 26

F
feed() (in module flask_blogging.views), 30
feed_posts_fetched (in module flask_blogging.signals),

33
feed_posts_processed (in module flask_blogging.signals),

33
flask_blogging (module), 25
flask_blogging.engine (module), 25
flask_blogging.forms (module), 30
flask_blogging.signals (module), 31
flask_blogging.sqlastorage (module), 27
flask_blogging.storage (module), 29
flask_blogging.views (module), 30

G
get_post_by_id() (flask_blogging.sqlastorage.SQLAStorage

method), 27
get_post_by_id() (flask_blogging.storage.Storage

method), 29
get_posts() (flask_blogging.engine.BloggingEngine

method), 26
get_posts() (flask_blogging.sqlastorage.SQLAStorage

method), 28
get_posts() (flask_blogging.storage.Storage method), 29
get_user_name() (flask_blogging.engine.BloggingEngine

class method), 26

I
index() (in module flask_blogging.views), 30

39

Flask-Blogging Documentation, Release 1.0.1

index_posts_fetched (in module flask_blogging.signals),
32

index_posts_processed (in module
flask_blogging.signals), 32

init_app() (flask_blogging.engine.BloggingEngine
method), 26

is_author() (flask_blogging.processor.PostProcessor class
method), 26

is_user_blogger() (flask_blogging.engine.BloggingEngine
method), 26

M
metadata (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 28

N
normalize_tag() (flask_blogging.storage.Storage static

method), 29
normalize_tags() (flask_blogging.storage.Storage class

method), 29

P
page_by_id() (in module flask_blogging.views), 30
page_by_id_fetched (in module flask_blogging.signals),

31
page_by_id_processed (in module

flask_blogging.signals), 31
post_deleted (in module flask_blogging.signals), 34
post_model (flask_blogging.sqlastorage.SQLAStorage

attribute), 28
post_processed (in module flask_blogging.signals), 31
post_table (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 28
PostProcessor (class in flask_blogging.processor), 26
posts_by_author() (in module flask_blogging.views), 30
posts_by_author_fetched (in module

flask_blogging.signals), 32
posts_by_author_processed (in module

flask_blogging.signals), 32
posts_by_tag() (in module flask_blogging.views), 30
posts_by_tag_fetched (in module flask_blogging.signals),

31
posts_by_tag_processed (in module

flask_blogging.signals), 32
process() (flask_blogging.processor.PostProcessor class

method), 26
process_post() (flask_blogging.engine.BloggingEngine

method), 26

R
render_text() (flask_blogging.processor.PostProcessor

class method), 27

S
save_post() (flask_blogging.sqlastorage.SQLAStorage

method), 28
save_post() (flask_blogging.storage.Storage method), 29
set_custom_extensions() (flask_blogging.processor.PostProcessor

class method), 27
signals (in module flask_blogging), 31
sitemap() (in module flask_blogging.views), 30
sitemap_posts_fetched (in module

flask_blogging.signals), 33
sitemap_posts_processed (in module

flask_blogging.signals), 33
sqla_initialized (in module flask_blogging.signals), 34
SQLAStorage (class in flask_blogging.sqlastorage), 27
Storage (class in flask_blogging.storage), 29
submit (flask_blogging.forms.BlogEditor attribute), 30

T
tag_model (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 28
tag_posts_table (flask_blogging.sqlastorage.SQLAStorage

attribute), 28
tag_table (flask_blogging.sqlastorage.SQLAStorage at-

tribute), 28
tags (flask_blogging.forms.BlogEditor attribute), 31
text (flask_blogging.forms.BlogEditor attribute), 31
title (flask_blogging.forms.BlogEditor attribute), 31

U
unless() (in module flask_blogging.views), 30
user_loader() (flask_blogging.engine.BloggingEngine

method), 26
user_posts_table (flask_blogging.sqlastorage.SQLAStorage

attribute), 28

40 Index

	Quick Start Example
	Configuring your Application
	Models from SQLAStorage
	Adding Custom Markdown Extensions
	Extending using Markdown Metadata
	Extending using the plugin framework

	Configuration Variables
	Blog Views
	Permissions
	Screenshots
	Blog Page
	Blog Editor

	Useful Tips
	Release Notes
	Compatibility Notes
	API Documentation
	Module contents
	Submodules
	flask_blogging.engine module
	flask_blogging.processor module
	flask_blogging.sqlastorage module
	flask_blogging.storage module
	flask_blogging.views module
	flask_blogging.forms module
	flask_blogging.signals module

	Contributors
	Python Module Index

