
Flask-Blogging Documentation
Release 0.4.1

Gouthaman Balaraman

September 16, 2015

Contents

1 Quick Start Example 3

2 Configuring your Application 5

3 Configuration Variables 7

4 Blog Views 9

5 Permissions 11

6 Screenshots 13
6.1 Blog Page . 14
6.2 Blog Editor . 14

7 Useful Tips 15

8 Release Notes 17

9 Compatibility Notes 19

10 API Documentation 21
10.1 Module contents . 21
10.2 Submodules . 21
10.3 flask_blogging.engine module . 21
10.4 flask_blogging.processor module . 21
10.5 flask_blogging.sqlastorage module . 21
10.6 flask_blogging.storage module . 21
10.7 flask_blogging.views module . 21
10.8 flask_blogging.forms module . 21

11 Contributors 23

i

ii

Flask-Blogging Documentation, Release 0.4.1

Flask-Blogging is a Flask extension for adding Markdown based blog support to your site. It provides a flexible
mechanism to store the data in the database of your choice. It is meant to work with the authentication provided by
packages such as Flask-Login or Flask-Security.

The philosophy behind this extension is to provide a lean app based on Markdown to provide blog support to your
existing web application. This is contrary to some other packages such as Flask-Blog that are just blogs. If you already
have a web app and you need to have a blog to communicate with your user or to promote your site through content
based marketing, then Flask-Blogging would help you quickly get a blog up and running.

Out of the box, Flask-Blogging has support for the following:

• Bootstrap based site

• Markdown based blog editor

• Models to store blog

• Authentication of User’s choice

• Sitemap, ATOM support

• Disqus support for comments

• Google analytics for usage tracking

• Permissions enabled to control which users can create/edit blogs

• Integrated Flask-Cache based caching for optimization

• Well documented, tested, and extensible design

• Quick Start Example
• Configuring your Application
• Configuration Variables
• Blog Views
• Permissions
• Screenshots

– Blog Page
– Blog Editor

• Useful Tips
• Release Notes
• Compatibility Notes
• API Documentation

– Module contents
– Submodules
– flask_blogging.engine module
– flask_blogging.processor module
– flask_blogging.sqlastorage module
– flask_blogging.storage module
– flask_blogging.views module
– flask_blogging.forms module

• Contributors

Contents 1

https://flask-login.readthedocs.org/en/latest/
https://pythonhosted.org/Flask-Security/
https://github.com/dmaslov/flask-blog

Flask-Blogging Documentation, Release 0.4.1

2 Contents

CHAPTER 1

Quick Start Example

from flask import Flask, render_template_string, redirect
from sqlalchemy import create_engine, MetaData
from flask.ext.login import UserMixin, LoginManager, \

login_user, logout_user
from flask.ext.blogging import SQLAStorage, BloggingEngine

app = Flask(__name__)
app.config["SECRET_KEY"] = "secret" # for WTF-forms and login
app.config["BLOGGING_URL_PREFIX"] = "/blog"
app.config["BLOGGING_DISQUS_SITENAME"] = "test"
app.config["BLOGGING_SITEURL"] = "http://localhost:8000"

extensions
engine = create_engine('sqlite:////tmp/blog.db')
meta = MetaData()
sql_storage = SQLAStorage(engine, metadata=meta)
blog_engine = BloggingEngine(app, sql_storage)
login_manager = LoginManager(app)
meta.create_all(bind=engine)

user class for providing authentication
class User(UserMixin):

def __init__(self, user_id):
self.id = user_id

def get_name(self):
return "Paul Dirac" # typically the user's name

@login_manager.user_loader
@blog_engine.user_loader
def load_user(user_id):

return User(user_id)

index_template = """
<!DOCTYPE html>
<html>

<head> </head>
<body>

{% if current_user.is_authenticated() %}
Logout

{% else %}
Login

{% endif %}

3

Flask-Blogging Documentation, Release 0.4.1

 Blog
 Sitemap
 ATOM

</body>
</html>
"""

@app.route("/")
def index():

return render_template_string(index_template)

@app.route("/login/")
def login():

user = User("testuser")
login_user(user)
return redirect("/blog")

@app.route("/logout/")
def logout():

logout_user()
return redirect("/")

if __name__ == "__main__":
app.run(debug=True, port=8000, use_reloader=True)

The key components required to get the blog hooked is explained below.

4 Chapter 1. Quick Start Example

CHAPTER 2

Configuring your Application

The BloggingEngine class is the gateway to configure blogging support to your web app. You should create the
BloggingEngine instance like this:

blogging_engine = BloggingEngine()
blogging_engine.init_app(app, storage)

You also need to pick the storage for blog. That can be done as:

from sqlalchemy import create_engine, MetaData

engine = create_engine("sqlite:////tmp/sqlite.db")
meta = MetaData()
storage = SQLAStorage(engine, metadata=meta)
meta.create_all(bind=engine)

Here we have created the storage, and created all the tables in the metadata. Once you have created the blogging
engine, storage, and all the tables in the storage, you can connect with your app using the init_app method as shown
below:

blogging_engine.init_app(app, storage)

If you are using Flask-Sqlalchemy, you can do the following:

from flask.ext.sqlalchemy import SQLAlchemy

db = SQLAlchemy(app)
storage = SQLAStorage(db=db)
db.create_all()

One of the changes in version 0.3.1 is the ability for the user to provide the metadata object. This has the benefit
of the table creation being passed to the user. Also, this gives the user the ability to use the common metadata object,
and hence helps with the tables showing up in migrations while using Alembic.

As of version 0.4.0, Flask-Cache integration is supported. In order to use caching in the blogging engine, you need to
pass the Cache instance to the BloggingEngine as:

from flask.ext.cache import Cache
from flask.ext.blogging import BloggingEngine

blogging_engine = BloggingEngine(app, storage, cache)

Flask-Blogging lets the developer pick the authentication that is suitable, and hence requires her to provide a way to
load user information. You will need to provide a BloggingEngine.user_loader callback. This callback is used to load

5

Flask-Blogging Documentation, Release 0.4.1

the user from the user_id that is stored for each blog post. Just as in Flask-Login, it should take the unicode user_id
of a user, and return the corresponding user object. For example:

@blogging_engine.user_loader
def load_user(userid):

return User.get(userid)

For the blog to have a readable display name, the User class must implement either the get_name method or the
__str__ method.

The BloggingEngine accepts an optional extensions argument. This is a list of Markdown extensions objects
to be used during the markdown processing step.

The BloggingEngine also accepts post_processor argument, which can be used to provide a custom post
processor object to handle the processing of Markdown text. An ideal way to do this would be to inherit the de-
fault PostProcessor object and override custom methods. There is a custom_process method that can be
overridden to add extra functionality to the post processing step.

In version 0.4.1 and onwards, the BloggingEngine object can be accessed from your app as follows:

engine = app.extensions["blogging"]

The engine method also exposes a get_posts method to get the recent posts for display of posts in other views.

In earlier versions the same can be done using the key FLASK_BLOGGING_ENGINE instead of blogging. The use
of FLASK_BLOGGING_ENGINE key will be deprecated moving forward.

6 Chapter 2. Configuring your Application

CHAPTER 3

Configuration Variables

The Flask-Blogging extension can be configured by setting the following app config variables. These arguments are
passed to all the views. The keys that are currently supported include:

• BLOGGING_SITENAME (str): The name of the blog to be used as the brand name.This is also used in the feed
heading. (default “Flask-Blogging”)

• BLOGGING_SITEURL (str): The url of the site.

• BLOGGING_RENDER_TEXT (bool): Value to specify if the raw text should be rendered or not. (default True)

• BLOGGING_DISQUS_SITENAME (str): Disqus sitename for comments. A None value will disable com-
ments. (default None)

• BLOGGING_GOOGLE_ANALYTICS (str): Google analytics code for usage tracking. A None value will dis-
able google analytics. (default None)

• BLOGGING_URL_PREFIX (str) : The prefix for the URL of blog posts. A None value will have no prefix
(default None).

• BLOGGING_FEED_LIMIT (int): The number of posts to limit to in the feed. If None, then all are shown, else
will be limited to this number. (default None)

• BLOGGING_PERMISSIONS (bool): if True, this will enable permissions for the blogging engine. With
permissions enabled, the user will need to have “blogger” Role to edit or create blog posts. Other authenticated
users will not have blog editing permissions. The concepts here derive from Flask-Principal (default
False)

• BLOGGING_POSTS_PER_PAGE (int): This sets the default number of pages to be displayed per page. (default
10)

• BLOGGING_CACHE_TIMEOUT (int): The timeout in seconds used to cache the blog pages. (default 60)

7

Flask-Blogging Documentation, Release 0.4.1

8 Chapter 3. Configuration Variables

CHAPTER 4

Blog Views

There are various views that are exposed through Flask-Blogging. The URL for the various views are:

• url_for(’blogging.index’) (GET): The index blog posts with the first page of articles.

• url_for(’blogging.page_by_id’, post_id=<post_id>) (GET): The blog post corresponding
to the post_id is retrieved.

• url_for(’blogging.posts_by_tag’, tag=<tag_name>) (GET): The list of blog posts corre-
sponding to tag_name is returned.

• url_for(’blogging.posts_by_author’, user_id=<user_id>) (GET): The list of blog posts
written by the author user_id is returned.

• url_for(’blogging.editor’) (GET, POST): The blog editor is shown. This view needs authentication
and permissions (if enabled).

• url_for(’blogging.delete’, post_id=<post_id>) (POST): The blog post given by post_id
is deleted. This view needs authentication and permissions (if enabled).

• url_for(’blogging.sitemap’) (GET): The sitemap with a link to all the posts is returned.

• url_for(’blogging.feed’) (GET): Returns ATOM feed URL.

The view can be easily customised by the user by overriding with their own templates. The template pages that need
to be customized are:

• blogging/index.html: The blog index page used to serve index of posts, posts by tag, and posts by author

• blogging/editor.html: The blog editor page.

• blogging/page.html: The page that shows the given article.

• blogging/sitemap.xml: The sitemap for the blog posts.

9

Flask-Blogging Documentation, Release 0.4.1

10 Chapter 4. Blog Views

CHAPTER 5

Permissions

In version 0.3.0 Flask-Blogging, enables permissions based on Flask-Principal. This addresses the issue of controlling
which of the authenticated users can have access to edit or create blog posts. Permissions are enabled by setting
BLOGGING_PERMISSIONS to True. Only users that have access to Role “blogger” will have permissions to
create or edit blog posts.

11

Flask-Blogging Documentation, Release 0.4.1

12 Chapter 5. Permissions

13

Flask-Blogging Documentation, Release 0.4.1

CHAPTER 6

Screenshots

6.1 Blog Page

6.2 Blog Editor

14 Chapter 6. Screenshots

CHAPTER 7

Useful Tips

• Postgres using psycopg2: If you use psycopg2 driver for Postgres while using the SQLAStorage you
would need to have autocommit turned on while creating the engine:

create_engine("postgresql+psycopg2://postgres:@localhost/flask_blogging",
isolation_level="AUTOCOMMIT")

• Migrations with Alembic: (Applies to versions 0.3.0 and earlier) If you have migrations part of your project
using Alembic, or extensions such as Flask-Migrate which uses Alembic, then you have to modify the
Alembic configuration in order for it to ignore the Flask-Blogging related tables. If you don’t set these
modifications, then every time you run migrations, Alembic will not recognize the tables and mark them for
deletion. And if you happen to upgrade by mistake then all your blog tables will be deleted. What we will do
here is ask Alembic to exclude the tables used by Flask-Blogging. In your alembic.ini file, add a
line:

[alembic:exclude]
tables = tag, post, tag_posts, user_posts

If you have a value set for table_prefix argument while creating the SQLAStorage, then the table names
will contain that prefix in their names. In which case, you have to use appropriate names in the table names.

And in your env.py, we have to mark these tables as the ones to be ignored.

def exclude_tables_from_config(config_):
tables_ = config_.get("tables", None)
if tables_ is not None:

tables = tables_.split(",")
return tables

exclude_tables = exclude_tables_from_config(config.get_section('alembic:exclude'))

def include_object(object, name, type_, reflected, compare_to):
if type_ == "table" and name in exclude_tables:

return False
else:

return True

def run_migrations_online():
"""Run migrations in 'online' mode.

In this scenario we need to create an Engine
and associate a connection with the context.

"""

15

Flask-Blogging Documentation, Release 0.4.1

engine = engine_from_config(
config.get_section(config.config_ini_section),
prefix='sqlalchemy.',
poolclass=pool.NullPool)

connection = engine.connect()
context.configure(

connection=connection,
target_metadata=target_metadata,
include_object=include_object,
compare_type=True
)

try:
with context.begin_transaction():

context.run_migrations()
finally:

connection.close()

In the above, we are using include_object in context.configure(...) to be specified based on
the include_object function.

16 Chapter 7. Useful Tips

CHAPTER 8

Release Notes

• Version 0.4.1

Released September 16, 2015

– Added javascript to center images in blog page

– Added method in blogging engine to render post and fetch post.

• Version 0.4.0

Released July 26, 2015

– Integrated Flask-Cache to optimize blog page rendering

– Fixed a bug where anonymous user was shown the new blog button

• Version 0.3.2:

Released July 20, 2015

– Fixed a bug in the edit post routines. The edited post would end up as a new one instead.

• Version 0.3.1:

Released July 17, 2015

– The SQLAStorage accepts metadata, and SQLAlchemy object as inputs. This adds the ability to keep
the blogging table metadata synced up with other models. This feature adds compatibility with Alembic
autogenerate.

– Update docs to reflect the correct version number.

• Version 0.3.0:

Released July 11, 2015

– Permissions is a new feature introduced in this version. By setting BLOGGING_PERMISSIONS to True,
one can restrict which of the users can create, edit or delete posts.

– Added BLOGGING_POSTS_PER_PAGE configuration variable to control the number of posts in a page.

– Documented the url construction procedure.

• Version 0.2.1:

Released July 10, 2015

– BloggingEngine init_app method can be called without having to pass a storage object.

– Hook tests to setup.py script.

17

Flask-Blogging Documentation, Release 0.4.1

• Version 0.2.0:

Released July 6, 2015

– BloggingEngine configuration moved to the app config setting. This breaks backward compatibility.
See compatibility notes below.

– Added ability to limit number of posts shown in the feed through app configuration setting.

– The setup.py reads version from the module file. Improves version consistency.

• Version 0.1.2:

Released July 4, 2015

– Added Python 3.4 support

• Version 0.1.1:

Released June 15, 2015

– Fixed PEP8 errors

– Expanded SQLAStorage to include Postgres and MySQL flavors

– Added post_date and last_modified_date as arguments to the

Storage.save_post(...) call for general compatibility

• Version 0.1.0:

Released June 1, 2015

– Initial Release

– Adds detailed documentation

– Supports Markdown based blog editor

– Has 90% code coverage in unit tests

18 Chapter 8. Release Notes

CHAPTER 9

Compatibility Notes

• Version 0.4.1:

The documented way to get the blogging engine from app is using the key blogging from
app.extensions.

• Version 0.3.1:

The SQLAStoragewill accept metadata and set it internally. The database tables will not be created
automatically. The user would need to invoke create_all in the metadata or SQLAlchemy
object in Flask-SQLAlchemy.

• Version 0.3.0:

– In this release, the templates folder was renamed from blog to blogging. To override the existing
templates, you will need to create your templates in the blogging folder.

– The blueprint name was renamed from blog_api to blogging.

• Version 0.2.0:

In this version, BloggingEngine will no longer take config argument. Instead, all con-
figuration can be done through app config variables. Another BloggingEngine parameter,
url_prefix is also available only through config variable.

19

Flask-Blogging Documentation, Release 0.4.1

20 Chapter 9. Compatibility Notes

CHAPTER 10

API Documentation

10.1 Module contents

10.2 Submodules

10.3 flask_blogging.engine module

10.4 flask_blogging.processor module

10.5 flask_blogging.sqlastorage module

10.6 flask_blogging.storage module

10.7 flask_blogging.views module

10.8 flask_blogging.forms module

21

Flask-Blogging Documentation, Release 0.4.1

22 Chapter 10. API Documentation

CHAPTER 11

Contributors

• Gouthaman Balaraman

• adilosa

23

https://github.com/gouthambs/
https://github.com/adilosa/

	Quick Start Example
	Configuring your Application
	Configuration Variables
	Blog Views
	Permissions
	Screenshots
	Blog Page
	Blog Editor

	Useful Tips
	Release Notes
	Compatibility Notes
	API Documentation
	Module contents
	Submodules
	flask_blogging.engine module
	flask_blogging.processor module
	flask_blogging.sqlastorage module
	flask_blogging.storage module
	flask_blogging.views module
	flask_blogging.forms module

	Contributors

