

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

Flask-Blogging

Flask-Blogging is a Flask extension for adding Markdown based blog support to your site.
It provides a flexible mechanism to store the data in the database
of your choice. It is meant to work with the authentication
provided by packages such as
Flask-Login [https://flask-login.readthedocs.org/en/latest/] or
Flask-Security [https://pythonhosted.org/Flask-Security/].

The philosophy behind this extension is to provide a lean app based on Markdown
to provide blog support to your existing web application. This is contrary
to some other packages such as Flask-Blog [https://github.com/dmaslov/flask-blog]
that are just blogs. If you already have a
web app and you need to have a blog to communicate with your user or to
promote your site through content based marketing, then Flask-Blogging would help
you quickly get a blog up and running.

Out of the box, Flask-Blogging has support for the following:

	Bootstrap based site

	Markdown based blog editor

	Models to store blog

	Authentication of User’s choice

	Sitemap, ATOM support

	Disqus support for comments

	Google analytics for usage tracking

	Permissions enabled to control which users can create/edit blogs

	Well documented, tested, and extensible design

	Quick Start Example

	Configuring your Application

	Configuration Variables

	Blog Views

	Permissions

	Screenshots
	Blog Page

	Blog Editor

	Useful Tips

	Release Notes

	Compatibility Notes

	API Documentation
	Module contents

	Submodules

	flask_blogging.engine module

	flask_blogging.processor module

	flask_blogging.sqlastorage module

	flask_blogging.storage module

	flask_blogging.views module

	flask_blogging.forms module

	Contributors

Quick Start Example

from flask import Flask, render_template_string, redirect
from sqlalchemy import create_engine
from flask.ext.login import UserMixin, LoginManager, \
 login_user, logout_user
from flask.ext.blogging import SQLAStorage, BloggingEngine

app = Flask(__name__)
app.config["SECRET_KEY"] = "secret" # for WTF-forms and login
app.config["BLOGGING_URL_PREFIX"] = "/blog"
app.config["BLOGGING_DISQUS_SITENAME"] = "test"
app.config["BLOGGING_SITEURL"] = "http://localhost:8000"

extensions
engine = create_engine('sqlite:////tmp/blog.db')
sql_storage = SQLAStorage(engine)
blog_engine = BloggingEngine(app, sql_storage)
login_manager = LoginManager(app)

user class for providing authentication
class User(UserMixin):
 def __init__(self, user_id):
 self.id = user_id

 def get_name(self):
 return "Paul Dirac" # typically the user's name

@login_manager.user_loader
@blog_engine.user_loader
def load_user(user_id):
 return User(user_id)

index_template = """
<!DOCTYPE html>
<html>
 <head> </head>
 <body>
 {% if current_user.is_authenticated() %}
 Logout
 {% else %}
 Login
 {% endif %}
 Blog
 Sitemap
 ATOM
 </body>
</html>
"""

@app.route("/")
def index():
 return render_template_string(index_template)

@app.route("/login/")
def login():
 user = User("testuser")
 login_user(user)
 return redirect("/blog")

@app.route("/logout/")
def logout():
 logout_user()
 return redirect("/")

if __name__ == "__main__":
 app.run(debug=True, port=8000, use_reloader=True)

The key components required to get the blog hooked is explained below.

Configuring your Application

The BloggingEngine class is the gateway to configure blogging support
to your web app. You should create the BloggingEngine instance like this:

blogging_engine = BloggingEngine()

You also need to pick the storage for blog. That can be done as:

from sqlalchemy import create_engine

engine = create_engine("sqlite:////tmp/sqlite.db")
storage = SQLAStorage(engine)

Once you have created the blogging engine and the storage, you can connect
with your app using the init_app method as shown below:

blogging_engine.init_app(app, storage)

Flask-Blogging lets the developer pick the authentication
that is suitable, and hence requires her to provide a way to load user
information. You will need to provide a BloggingEngine.user_loader
callback. This callback is used to load the user from the user_id
that is stored for each blog post. Just as in Flask-Login, it should take the
unicode user_id of a user, and return the corresponding user
object. For example:

@blogging_engine.user_loader
def load_user(userid):
 return User.get(userid)

For the blog to have a readable display name, the User class must
implement either the get_name method or the __str__ method.

The BloggingEngine accepts an optional extensions argument. This is a list
of Markdown extensions objects to be used during the markdown processing step.

The BloggingEngine also accepts post_processor argument, which can be
used to provide a custom post processor object to handle the processing
of Markdown text. An ideal way to do this would be to inherit the default
PostProcessor object and override custom methods. There is a
custom_process method that can be overridden to add extra functionality
to the post processing step.

Configuration Variables

The Flask-Blogging extension can be configured by setting the following app
config variables. These arguments are passed to all the views. The
keys that are currently supported include:

	BLOGGING_SITENAME (str): The name of the blog to be used as the brand
name.This is also used in the feed heading. (default “Flask-Blogging”)

	BLOGGING_SITEURL (str): The url of the site.

	BLOGGING_RENDER_TEXT (bool): Value to specify if the raw text should be
rendered or not. (default True)

	BLOGGING_DISQUS_SITENAME (str): Disqus sitename for comments.
A None value will disable comments. (default None)

	BLOGGING_GOOGLE_ANALYTICS (str): Google analytics code for usage
tracking. A None value will disable google analytics. (default None)

	BLOGGING_URL_PREFIX (str) : The prefix for the URL of blog posts. A
None value will have no prefix (default None).

	BLOGGING_FEED_LIMIT (int): The number of posts to limit to in the feed.
If None, then all are shown, else will be limited to this number. (default None)

	BLOGGING_PERMISSIONS (bool): if True, this will enable permissions
for the blogging engine. With permissions enabled, the user will need to have
“blogger” Role to edit or create blog posts. Other authenticated
users will not have blog editing permissions. The concepts here derive
from Flask-Principal (default False)

	
	BLOGGING_POSTS_PER_PAGE (int): This sets the default number of pages

	to be displayed per page. (default 10)

Blog Views

There are various views that are exposed through Flask-Blogging. The URL for
the various views are:

	url_for('blogging.index') (GET): The index blog posts with the first
page of articles.

	url_for('blogging.page_by_id', post_id=<post_id>) (GET): The blog post
corresponding to the post_id is retrieved.

	url_for('blogging.posts_by_tag', tag=<tag_name>) (GET): The list of blog
posts corresponding to tag_name is returned.

	url_for('blogging.posts_by_author', user_id=<user_id>) (GET): The list of
blog posts written by the author user_id is returned.

	url_for('blogging.editor') (GET, POST): The blog editor
is shown. This view needs authentication and permissions (if enabled).

	url_for('blogging.delete', post_id=<post_id>) (POST): The blog post
given by post_id is deleted. This view needs authentication and
permissions (if enabled).

	url_for('blogging.sitemap') (GET): The sitemap
with a link to all the posts is returned.

	url_for('blogging.feed') (GET): Returns ATOM feed URL.

The view can be easily customised by the user by overriding with their own templates. The template pages that need
to be customized are:

	blogging/index.html: The blog index page used to serve index of posts, posts by tag, and posts by author

	blogging/editor.html: The blog editor page.

	blogging/page.html: The page that shows the given article.

	blogging/sitemap.xml: The sitemap for the blog posts.

Permissions

In version 0.3.0 Flask-Blogging, enables permissions based on Flask-Principal.
This addresses the issue of controlling which of the authenticated users can
have access to edit or create blog posts. Permissions are enabled by setting
BLOGGING_PERMISSIONS to True. Only users that have access to
Role “blogger” will have permissions to create or edit blog posts.

Screenshots

Blog Page

[image: _images/blog_page.png]

Blog Editor

[image: _images/blog_editor.png]

Useful Tips

	Postgres using psycopg2:
If you use psycopg2 driver for Postgres while using the SQLAStorage
you would need to have autocommit turned on while creating the engine:

create_engine("postgresql+psycopg2://postgres:@localhost/flask_blogging",
 isolation_level="AUTOCOMMIT")

	Migrations with Alembic: If you have migrations part of your project
using Alembic, or extensions such as Flask-Migrate which uses Alembic, then
you have to modify the Alembic configuration in order for it to ignore
the Flask-Blogging related tables. If you don’t set these modifications,
then every time you run migrations, Alembic will not recognize the
tables and mark them for deletion. And if you happen to upgrade by mistake
then all your blog tables will be deleted. What we will do here is ask
Alembic to exclude the tables used by Flask-Blogging. In your
alembic.ini file, add a line:

[alembic:exclude]
tables = tag, post, tag_posts, user_posts

If you have a value set for table_prefix argument while creating the SQLAStorage,
then the table names will contain that prefix in their names. In which case, you have
to use appropriate names in the table names.

And in your env.py, we have to mark these tables as the ones to be
ignored.

def exclude_tables_from_config(config_):
 tables_ = config_.get("tables", None)
 if tables_ is not None:
 tables = tables_.split(",")
 return tables

exclude_tables = exclude_tables_from_config(config.get_section('alembic:exclude'))

def include_object(object, name, type_, reflected, compare_to):
 if type_ == "table" and name in exclude_tables:
 return False
 else:
 return True

def run_migrations_online():
 """Run migrations in 'online' mode.

 In this scenario we need to create an Engine
 and associate a connection with the context.

 """
 engine = engine_from_config(
 config.get_section(config.config_ini_section),
 prefix='sqlalchemy.',
 poolclass=pool.NullPool)

 connection = engine.connect()
 context.configure(
 connection=connection,
 target_metadata=target_metadata,
 include_object=include_object,
 compare_type=True
)

 try:
 with context.begin_transaction():
 context.run_migrations()
 finally:
 connection.close()

In the above, we are using include_object in context.configure(...)
to be specified based on the include_object function.

Release Notes

	Version 0.3.0:

Released July 11, 2015

	Permissions is a new feature introduced in this version. By setting
BLOGGING_PERMISSIONS to True, one can restrict which of the users
can create, edit or delete posts.

	Added BLOGGING_POSTS_PER_PAGE configuration variable to control
the number of posts in a page.

	Documented the url construction procedure.

	Version 0.2.1:

Released July 10, 2015

	BloggingEngine init_app method can be called without having to
pass a storage object.

	Hook tests to setup.py script.

	Version 0.2.0:

Released July 6, 2015

	BloggingEngine configuration moved to the app config setting.
This breaks backward compatibility. See compatibility notes below.

	Added ability to limit number of posts shown in the feed through
app configuration setting.

	The setup.py reads version from the module file. Improves version
consistency.

	Version 0.1.2:

Released July 4, 2015

	Added Python 3.4 support

	Version 0.1.1:

Released June 15, 2015

	Fixed PEP8 errors

	Expanded SQLAStorage to include Postgres and MySQL flavors

	Added post_date and last_modified_date as arguments to the

Storage.save_post(...) call for general compatibility

	Version 0.1.0:

Released June 1, 2015

	Initial Release

	Adds detailed documentation

	Supports Markdown based blog editor

	Has 90% code coverage in unit tests

Compatibility Notes

	Version 0.3.0:

In this release, the templates folder was renamed from blog to
blogging. To override the existing templates, you will need to
create your templates in the blogging folder.

	Version 0.2.0:

In this version, BloggingEngine will no longer take config
argument. Instead, all configuration can be done through app config
variables. Another BloggingEngine parameter, url_prefix is also
available only through config variable.

API Documentation

Module contents

Submodules

flask_blogging.engine module

The BloggingEngine module.

	
class flask_blogging.engine.BloggingEngine(app=None, storage=None, post_processor=None, extensions=None)

	Bases: object

The BloggingEngine is the class for initializing the blog support for your
web app. Here is an example usage:

from flask import Flask
from flask.ext.blogging import BloggingEngine, SQLAStorage
from sqlalchemy import create_engine

app = Flask(__name__)
db_engine = create_engine("sqlite:////tmp/sqlite.db")
storage = SQLAStorage(db_engine)
blog_engine = BloggingEngine(app, storage)

	
__init__(app=None, storage=None, post_processor=None, extensions=None)

	

	Parameters:	
	app (object) – Optional app to use

	storage (object) – The blog storage instance that implements the
Storage class interface.

	post_processor (object) – (optional) The post processor object. If none
provided, the default post processor is used.

	extensions (list) – A list of markdown extensions to add to post
processing step.

	Returns:	

	
blogger_permission

	

	
init_app(app, storage=None)

	Initialize the engine.

	Parameters:	
	app – The app to use

	storage – The blog storage instance that implements the
Storage class interface.

	
is_user_blogger()

	

	
user_loader(callback)

	The decorator for loading the user.

	Parameters:	callback – The callback function that can load a user given a
unicode user_id.

	Returns:	The callback function

flask_blogging.processor module

	
class flask_blogging.processor.PostProcessor

	Bases: object

	
classmethod all_extensions()

	

	
classmethod construct_url(post)

	

	
static create_slug(title)

	

	
classmethod custom_process(post)

	Override this method to add additional processes. The result is that
the post dict is modified or enhanced with newer key value pairs.

	Parameters:	post (dict) – The post data with values for keys such as title, text,
tags etc.

	
classmethod process(post, render=True)

	This method takes the post data and renders it
:param post:
:param render:
:return:

	
classmethod render_text(post)

	

	
classmethod set_custom_extensions(extensions)

	

flask_blogging.sqlastorage module

	
class flask_blogging.sqlastorage.SQLAStorage(engine, table_prefix='')

	Bases: flask_blogging.storage.Storage

The SQLAStorage implements the interface specified by the Storage
class. This class uses SQLAlchemy to implement storage and retrieval of
data from any of the databases supported by SQLAlchemy. This

	
__init__(engine, table_prefix='')

	The constructor for the SQLAStorage class.

	Parameters:	engine – The SQLAlchemy engine instance created by calling

create_engine. One can also use Flask-SQLAlchemy, and pass the
engine property.
:type engine: object
:param table_prefix: (Optional) Prefix to use for the tables created

(default "").

	
count_posts(tag=None, user_id=None, include_draft=False)

	Returns the total number of posts for the give filter

	Parameters:	
	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	The number of posts for the given filter.

	
delete_post(post_id)

	Delete the post defined by post_id

	Parameters:	post_id (int) – The identifier corresponding to a post

	Returns:	Returns True if the post was successfully deleted and False
otherwise.

	
get_post_by_id(post_id)

	Fetch the blog post given by post_id

	Parameters:	post_id (int) – The post identifier for the blog post

	Returns:	If the post_id is valid, the post data is retrieved, else
returns None.

	
get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)

	Get posts given by filter criteria

	Parameters:	
	count (int) – The number of posts to retrieve (default 10)

	offset (int) – The number of posts to offset (default 0)

	recent (bool) – Order by recent posts or not

	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	A list of posts, with each element a dict containing values
for the following keys: (title, text, draft, post_date,
last_modified_date). If count is None, then all the posts are
returned.

	
save_post(title, text, user_id, tags, draft=False, post_date=None, last_modified_date=None, meta_data=None, post_id=None)

	Persist the blog post data. If post_id is None or post_id
is invalid, the post must be inserted into the storage. If post_id
is a valid id, then the data must be updated.

	Parameters:	
	title (str) – The title of the blog post

	text (str) – The text of the blog post

	user_id (str) – The user identifier

	tags (list) – A list of tags

	draft (bool) – (Optional) If the post is a draft of if needs to be
published. (default False)

	post_date (datetime.datetime) – (Optional) The date the blog was posted (default
datetime.datetime.utcnow())

	last_modified_date (datetime.datetime) – (Optional) The date when blog was last
modified (default datetime.datetime.utcnow())

	post_id (int) – (Optional) The post identifier. This should be None
for an insert call,
and a valid value for update. (default None)

	Returns:	The post_id value, in case of a successful insert or update.
Return None if there were errors.

flask_blogging.storage module

	
class flask_blogging.storage.Storage

	Bases: object

	
count_posts(tag=None, user_id=None, include_draft=False)

	Returns the total number of posts for the give filter

	Parameters:	
	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	The number of posts for the given filter.

	
delete_post(post_id)

	Delete the post defined by post_id

	Parameters:	post_id (int) – The identifier corresponding to a post

	Returns:	Returns True if the post was successfully deleted and False
otherwise.

	
get_post_by_id(post_id)

	Fetch the blog post given by post_id

	Parameters:	post_id (int) – The post identifier for the blog post

	Returns:	If the post_id is valid, the post data is retrieved,

else returns None.

	
get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)

	Get posts given by filter criteria

	Parameters:	
	count (int) – The number of posts to retrieve (default 10). If count
is None, all posts are returned.

	offset (int) – The number of posts to offset (default 0)

	recent (bool) – Order by recent posts or not

	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	A list of posts, with each element a dict containing values
for the following keys: (title, text, draft, post_date,
last_modified_date). If count is None, then all the posts are
returned.

	
static normalize_tags(tags)

	

	
save_post(title, text, user_id, tags, draft=False, post_date=None, last_modified_date=None, meta_data=None, post_id=None)

	Persist the blog post data. If post_id is None or post_id
is invalid, the post must be inserted into the storage. If post_id
is a valid id, then the data must be updated.

	Parameters:	
	title (str) – The title of the blog post

	text (str) – The text of the blog post

	user_id (str) – The user identifier

	tags (list) – A list of tags

	draft (bool) – If the post is a draft of if needs to be published.

	post_date (datetime.datetime) – (Optional) The date the blog was posted (default
datetime.datetime.utcnow())

	last_modified_date (datetime.datetime) – (Optional) The date when blog was last
modified (default datetime.datetime.utcnow())

	meta_data (dict) – The meta data for the blog post

	post_id (int) – The post identifier. This should be None for an
insert call, and a valid value for update.

	Returns:	The post_id value, in case of a successful insert or update.

Return None if there were errors.

flask_blogging.views module

	
flask_blogging.views.delete(*args, **kwargs)

	

	
flask_blogging.views.editor(*args, **kwargs)

	

	
flask_blogging.views.feed()

	

	
flask_blogging.views.index(count, page)

	Serves the page with a list of blog posts

	Parameters:	
	count –

	offset –

	Returns:	

	
flask_blogging.views.page_by_id(post_id, slug)

	

	
flask_blogging.views.posts_by_author(user_id, count, page)

	

	
flask_blogging.views.posts_by_tag(tag, count, page)

	

	
flask_blogging.views.sitemap()

	

flask_blogging.forms module

	
class flask_blogging.forms.BlogEditor(formdata=<class flask_wtf.form._Auto>, obj=None, prefix='', csrf_context=None, secret_key=None, csrf_enabled=None, *args, **kwargs)

	
	
draft = <UnboundField(BooleanField, ('draft',), {'default': False})>

	

	
submit = <UnboundField(SubmitField, ('submit',), {})>

	

	
tags = <UnboundField(StringField, ('tags',), {'validators': [<wtforms.validators.DataRequired object at 0x7f4010c136d0>]})>

	

	
text = <UnboundField(TextAreaField, ('text',), {'validators': [<wtforms.validators.DataRequired object at 0x7f4010c13650>]})>

	

	
title = <UnboundField(StringField, ('title',), {'validators': [<wtforms.validators.DataRequired object at 0x7f4010c135d0>]})>

	

Contributors

	Gouthaman Balaraman [https://github.com/gouthambs/]

	adilosa [https://github.com/adilosa/]

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask_blogging	

 	
 	
 flask_blogging.engine	

 	
 	
 flask_blogging.forms	

 	
 	
 flask_blogging.sqlastorage	

 	
 	
 flask_blogging.storage	

 	
 	
 flask_blogging.views	

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | N
 | P
 | R
 | S
 | T
 | U

_

 	

 	__init__() (flask_blogging.engine.BloggingEngine method)

 	

 	(flask_blogging.sqlastorage.SQLAStorage method)

A

 	

 	all_extensions() (flask_blogging.processor.PostProcessor class method)

B

 	

 	BlogEditor (class in flask_blogging.forms)

 	blogger_permission (flask_blogging.engine.BloggingEngine attribute)

 	

 	BloggingEngine (class in flask_blogging.engine)

C

 	

 	construct_url() (flask_blogging.processor.PostProcessor class method)

 	count_posts() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	create_slug() (flask_blogging.processor.PostProcessor static method)

 	custom_process() (flask_blogging.processor.PostProcessor class method)

D

 	

 	delete() (in module flask_blogging.views)

 	delete_post() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	draft (flask_blogging.forms.BlogEditor attribute)

E

 	

 	editor() (in module flask_blogging.views)

F

 	

 	feed() (in module flask_blogging.views)

 	flask_blogging (module)

 	flask_blogging.engine (module)

 	flask_blogging.forms (module)

 	

 	flask_blogging.sqlastorage (module)

 	flask_blogging.storage (module)

 	flask_blogging.views (module)

G

 	

 	get_post_by_id() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	get_posts() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

I

 	

 	index() (in module flask_blogging.views)

 	init_app() (flask_blogging.engine.BloggingEngine method)

 	

 	is_user_blogger() (flask_blogging.engine.BloggingEngine method)

N

 	

 	normalize_tags() (flask_blogging.storage.Storage static method)

P

 	

 	page_by_id() (in module flask_blogging.views)

 	PostProcessor (class in flask_blogging.processor)

 	posts_by_author() (in module flask_blogging.views)

 	

 	posts_by_tag() (in module flask_blogging.views)

 	process() (flask_blogging.processor.PostProcessor class method)

R

 	

 	render_text() (flask_blogging.processor.PostProcessor class method)

S

 	

 	save_post() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	set_custom_extensions() (flask_blogging.processor.PostProcessor class method)

 	sitemap() (in module flask_blogging.views)

 	

 	SQLAStorage (class in flask_blogging.sqlastorage)

 	Storage (class in flask_blogging.storage)

 	submit (flask_blogging.forms.BlogEditor attribute)

T

 	

 	tags (flask_blogging.forms.BlogEditor attribute)

 	text (flask_blogging.forms.BlogEditor attribute)

 	

 	title (flask_blogging.forms.BlogEditor attribute)

U

 	

 	user_loader() (flask_blogging.engine.BloggingEngine method)

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 _static/comment.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/up-pressed.png

_images/blog_page.png
@ Delete G Edit 4 New

Dirac Equation

Posted by Paul Dirac on 03 Jun, 2015

In particle physics, the Dirac equation is a refativistic wave equation derived by British physicist Paul Dirac in 1928
In its free form. or including electromagnetic interactions, it describes all spin-1/2 massive particles, for which
parity is a symmetry, such as electrons and quarks, and is consistent with both the principles of quantum
mechanics and the theory of special relativity,[1] and was the first theory to account fully for special refativity in the
‘context of quantum mechanics.

Dirac's Equation s given as:

z,)

(Bme® + c(aups + copy +n(,p,))(b(z,t):iﬁa¢()

W puvsics

0Comments test @ Gouthaman Balar... ~
@ Recommend [Share Sort by Best ~

E Start the discussion.

Be the first to comment.

_images/blog_editor.png
Title

Dirac Equation

B I H & @

- - g3

In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928. In its free form, or including
electromagnetic interactions, it describes all spin-1/2 massive particles, for
which parity is a symmetry, such as electrons and quarks, and is consistent with
both the principles of quantum mechanics and the theory of special relativity,[1]
and was the first theory to account fully for special relativity in the context of
quantum mechanics.

Dirac’s Equation is given as:
33
\left(\beta mc"2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right) \psi (x,t)

= i \hbar \frac{\partial\psi(x,t) }{\partial t}
33

Leamn more about MarkDown

Tags
PHYSICS

releases.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Blogging 0.1.0 documentation »

Release Notes

		Version 0.3.0:

Released July 11, 2015

		Permissions is a new feature introduced in this version. By setting
BLOGGING_PERMISSIONS to True, one can restrict which of the users
can create, edit or delete posts.

		Added BLOGGING_POSTS_PER_PAGE configuration variable to control
the number of posts in a page.

		Documented the url construction procedure.

		Version 0.2.1:

Released July 10, 2015

		BloggingEngine init_app method can be called without having to
pass a storage object.

		Hook tests to setup.py script.

		Version 0.2.0:

Released July 6, 2015

		BloggingEngine configuration moved to the app config setting.
This breaks backward compatibility. See compatibility notes below.

		Added ability to limit number of posts shown in the feed through
app configuration setting.

		The setup.py reads version from the module file. Improves version
consistency.

		Version 0.1.2:

Released July 4, 2015

		Added Python 3.4 support

		Version 0.1.1:

Released June 15, 2015

		Fixed PEP8 errors

		Expanded SQLAStorage to include Postgres and MySQL flavors

		Added post_date and last_modified_date as arguments to the

Storage.save_post(...) call for general compatibility

		Version 0.1.0:

Released June 1, 2015

		Initial Release

		Adds detailed documentation

		Supports Markdown based blog editor

		Has 90% code coverage in unit tests

Compatibility Notes

		Version 0.3.0:

In this release, the templates folder was renamed from blog to
blogging. To override the existing templates, you will need to
create your templates in the blogging folder.

		Version 0.2.0:

In this version, BloggingEngine will no longer take config
argument. Instead, all configuration can be done through app config
variables. Another BloggingEngine parameter, url_prefix is also
available only through config variable.

 © Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/ajax-loader.gif

authors.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Blogging 0.1.0 documentation »

Contributors

		Gouthaman Balaraman [https://github.com/gouthambs/]

		adilosa [https://github.com/adilosa/]

 © Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

_static/blog_page.png
@ Delete G Edit 4 New

Dirac Equation

Posted by Paul Dirac on 03 Jun, 2015

In particle physics, the Dirac equation is a refativistic wave equation derived by British physicist Paul Dirac in 1928
In its free form. or including electromagnetic interactions, it describes all spin-1/2 massive particles, for which
parity is a symmetry, such as electrons and quarks, and is consistent with both the principles of quantum
mechanics and the theory of special relativity,[1] and was the first theory to account fully for special refativity in the
‘context of quantum mechanics.

Dirac's Equation s given as:

z,)

(Bme® + c(aups + copy +n(,p,))(b(z,t):iﬁa¢()

W puvsics

0Comments test @ Gouthaman Balar... ~
@ Recommend [Share Sort by Best ~

E Start the discussion.

Be the first to comment.

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Blogging 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

_static/blog_editor.png
Title

Dirac Equation

B I H & @

- - g3

In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928. In its free form, or including
electromagnetic interactions, it describes all spin-1/2 massive particles, for
which parity is a symmetry, such as electrons and quarks, and is consistent with
both the principles of quantum mechanics and the theory of special relativity,[1]
and was the first theory to account fully for special relativity in the context of
quantum mechanics.

Dirac’s Equation is given as:
33
\left(\beta mc"2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right) \psi (x,t)

= i \hbar \frac{\partial\psi(x,t) }{\partial t}
33

Leamn more about MarkDown

Tags
PHYSICS

