

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

Flask-Blogging

Flask-Blogging is a Flask extension for adding blog support to your site.
It provides a flexible mechanism to store the data in the database
of your choice. It is meant to work with the authentication
provided by packages such as
Flask-Login [https://flask-login.readthedocs.org/en/latest/] or
Flask-Security [https://pythonhosted.org/Flask-Security/].

The philosophy behind this extension is to provide a lean app based on markdown
to provide blog support to your existing web application. This is contrary
to some other packages such as that are just blogs. If you already have a
web app and you need to have a blog to communicate with your user or to
promote your site through content based marketing.

Out of the box Flask-Blogging has support for the following:

	Bootstrap based site

	Markdown based blog editor

	Models to store blog

	Authentication of User’s choice

	Sitemap, ATOM support

	Disqus support for comments

	Google analytics for usage tracking

	Well documented, tested, and extensible design

	Quick Start Example

	Configuring your Application

	Blog Views

	Screenshots
	Blog Page

	Blog Editor

	API Documentation
	Module contents

	Submodules

	flask_blogging.engine module

	flask_blogging.processor module

	flask_blogging.sqlastorage module

	flask_blogging.storage module

	flask_blogging.views module

	flask_blogging.forms module

Quick Start Example

from flask import Flask, render_template_string, redirect
from sqlalchemy import create_engine
from flask.ext.login import UserMixin, LoginManager, \
 login_user, logout_user
from flask_blogging import SQLAStorage, BloggingEngine

app = Flask(__name__)
app.config["SECRET_KEY"] = "secret" # for WTF-forms and login

extensions
engine = create_engine('sqlite:////tmp/blog.db')
sql_storage = SQLAStorage(engine)
blog_engine = BloggingEngine(app, sql_storage, url_prefix="/blog")
login_manager = LoginManager(app)

user class for providing authentication
class User(UserMixin):
 def __init__(self, user_id):
 self.id = user_id

 def get_name(self):
 return "Paul Dirac" # typically the user's name

@login_manager.user_loader
@blog_engine.user_loader
def load_user(user_id):
 return User(user_id)

index_template = """
<!DOCTYPE html>
<html>
 <head> </head>
 <body>
 {% if current_user.is_authenticated() %}
 Logout
 {% else %}
 Login
 {% endif %}
 Blog
 Sitemap
 ATOM
 </body>
</html>
"""

@app.route("/")
def index():
 return render_template_string(index_template)

@app.route("/login/")
def login():
 user = User("testuser")
 login_user(user)
 return redirect("/blog")

@app.route("/logout/")
def logout():
 logout_user()
 return redirect("/")

if __name__ == "__main__":
 app.run(debug=True, port=8000, use_reloader=True)

The key components required to get the blog hooked is explained below.

Configuring your Application

The BloggingEngine class is the gateway to configure blogging support
to your web app. You should create the BloggingEngine instance like this:

blogging_engine = BloggingEngine()

You also need to pick the storage for blog. That can be done as:

from sqlalchemy import create_engine

engine = create_engine("sqlite:////tmp/sqlite.db")
storage = SQLAStorage(engine)

Once you have created the blogging engine and the storage, you can connect
with your app using the init_app method as shown below:

blogging_engine.init_app(app, storage)

Flask-Blogging lets the developer pick the authentication
that is suitable, and hence requires her to provide a way to load user
information. You will need to provide a BloggingEngine.user_loader
callback. This callback is used to load the user from the user_id
that is stored for each blog post. Just as in Flask-Login, it should take the
unicode user_id of a user, and return the corresponding user
object. For example:

@blogging_engine.user_loader
def load_user(userid):
 return User.get(userid)

For the blog to have a readable display name, the User class must
implement either the get_name method or the __str__ method.

The BloggingEngine accepts an optional config dict argument which is passed to all
the views. The keys that are currently supported include:

	SITENAME
	The name of the blog to be used as the brand name
(default “Flask-Blogging”)

	SITEURL
	The url of the site.

	RENDER_TEXT
	Boolean value to specify if the raw text should be
rendered or not. (default True)

	DISQUS_SITENAME
	Disqus sitename for comments (default None)

	GOOGLE_ANALYTICS
	Google analytics code for usage tracking
(default None)

The BloggingEngine accepts an optional extensions argument. This is a list
of Markdown extensions objects to be used during the markdown processing step.

Blog Views

There are various views that are exposed through Flask-Blogging. If the url_prefix
argument in the BloggingEngine is /blog, then the URL for the various views are:

	/blog/ (GET): The index blog posts with the first page of articles.

	/blog/page/<post_id>/<optional slug>/ (GET): The blog post corresponding to the post_id is retrieved.

	/blog/tag/<tag_name/ (GET): The list of blog posts corresponding to tag_name is returned.

	/blog/author/<user_id>/ (GET): The list of blog posts written by the author user_id is returned.

	/blog/editor/ (GET, POST): The blog editor is shown. This view needs authentication.

	/blog/delete/<post_id>/ (POST): The blog post given by post_id is deleted. This view needs authentication.

	/blog/sitemap.xml (GET): The sitemap with a link to all the posts is returned.

The view can be easily customised by the user by overriding with their own templates. The template pages that need
to be customized are:

	blog/index.html: The blog index page used to serve index of posts, posts by tag, and posts by author

	blog/editor.html: The blog editor page.

	blog/page.html: The page that shows the given article.

	blog/sitemap.xml: The sitemap for the blog posts.

Screenshots

Blog Page

[image: _images/blog_page.png]

Blog Editor

[image: _images/blog_editor.png]

API Documentation

Module contents

Flask-Blogging is a Flask extension to add blog support to your
web application. This extension uses Markdown to store and then
render the webpage.

Author: Gouthaman Balaraman

Date: June 1, 2015

Submodules

flask_blogging.engine module

The BloggingEngine module.

	
class flask_blogging.engine.BloggingEngine(app=None, storage=None, url_prefix=None, post_processor=None, config=None, extensions=None)

	Bases: object

The BloggingEngine is the class for initializing the blog support for your
web app. Here is an example usage:

from flask import Flask
from flask.ext.blogging import BloggingEngine, SQLAStorage
from sqlalchemy import create_engine

app = Flask(__name__)
db_engine = create_engine("sqlite:////tmp/sqlite.db")
storage = SQLAStorage(db_engine)
blog_engine = BloggingEngine(app, storage)

	
__init__(app=None, storage=None, url_prefix=None, post_processor=None, config=None, extensions=None)

	

	Parameters:	
	app (object) – Optional app to use

	storage (object) – The blog storage instance that implements the Storage class interface.

	url_prefix (str) – (optional) The prefix for the URL of blog posts (default None)

	post_processor (object) – (optional) The post processor object. If none provided, the default is used.

	config (dict) – (optional) A dictionary of config values. See docs for the
keys that can be specified.

	extensions (list) – A list of markdown extensions to add to post processing step.

	Returns:	

	
init_app(app, storage)

	Initialize the engine.

	Parameters:	
	app – The app to use

	storage – The blog storage instance that implements the Storage class interface.

	
user_loader(callback)

	The decorator for loading the user.

	Parameters:	callback – The callback function that can load a user given a unicode user_id.

	Returns:	The callback function

flask_blogging.processor module

	
class flask_blogging.processor.PostProcessor

	Bases: object

	
classmethod all_extensions()

	

	
classmethod construct_url(post)

	

	
static create_slug(title)

	

	
classmethod custom_process(post)

	Override this method to add additional processes. The result is that
the post dict is modified or enhanced with newer key value pairs.

	Parameters:	post (dict) – The post data with values for keys such as title, text,
tags etc.

	
classmethod process(post, render=True)

	This method takes the post data and renders it
:param post:
:param render:
:return:

	
classmethod render_text(post)

	

	
classmethod set_custom_extensions(extensions)

	

flask_blogging.sqlastorage module

	
class flask_blogging.sqlastorage.SQLAStorage(engine, table_prefix='')

	Bases: flask_blogging.storage.Storage

The SQLAStorage implements the interface specified by the Storage class. This class
uses SQLAlchemy to implement storage and retrieval of data from any of the databases
supported by SQLAlchemy. This

	
__init__(engine, table_prefix='')

	The constructor for the SQLAStorage class.

	Parameters:	
	engine (object) – The SQLAlchemy engine instance created by calling create_engine. One can also use
Flask-SQLAlchemy, and pass the engine property.

	table_prefix (str) – (Optional) Prefix to use for the tables created (default "").

	
count_posts(tag=None, user_id=None, include_draft=False)

	Returns the total number of posts for the give filter

	Parameters:	
	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	The number of posts for the given filter.

	
delete_post(post_id)

	Delete the post defined by post_id

	Parameters:	post_id (int) – The identifier corresponding to a post

	Returns:	Returns True if the post was successfully deleted and False otherwise.

	
get_post_by_id(post_id)

	Fetch the blog post given by post_id

	Parameters:	post_id (int) – The post identifier for the blog post

	Returns:	If the post_id is valid, the post data is retrieved, else returns None.

	
get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)

	Get posts given by filter criteria

	Parameters:	
	count (int) – The number of posts to retrieve (default 10)

	offset (int) – The number of posts to offset (default 0)

	recent (bool) – Order by recent posts or not

	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	A list of posts, with each element a dict containing values for the following keys: (title, text, draft
post_date, last_modified_date). If count is None, then all the posts are returned.

	
save_post(title, text, user_id, tags, draft=False, post_id=None)

	Persist the blog post data. If post_id is None or post_id is invalid, the post must
be inserted into the storage. If post_id is a valid id, then the data must be updated.

	Parameters:	
	title (str) – The title of the blog post

	text (str) – The text of the blog post

	user_id (str) – The user identifier

	tags (list) – A list of tags

	draft (bool) – (Optional) If the post is a draft of if needs to be published. (default False)

	post_id (int) – (Optional) The post identifier. This should be None for an insert call,
and a valid value for update. (default None)

	Returns:	The post_id value, in case of a successful insert or update. Return None if there were errors.

flask_blogging.storage module

	
class flask_blogging.storage.Storage

	Bases: object

	
count_posts(tag=None, user_id=None, include_draft=False)

	Returns the total number of posts for the give filter

	Parameters:	
	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	The number of posts for the given filter.

	
delete_post(post_id)

	Delete the post defined by post_id

	Parameters:	post_id (int) – The identifier corresponding to a post

	Returns:	Returns True if the post was successfully deleted and False otherwise.

	
get_post_by_id(post_id)

	Fetch the blog post given by post_id

	Parameters:	post_id (int) – The post identifier for the blog post

	Returns:	If the post_id is valid, the post data is retrieved, else returns None.

	
get_posts(count=10, offset=0, recent=True, tag=None, user_id=None, include_draft=False)

	Get posts given by filter criteria

	Parameters:	
	count (int) – The number of posts to retrieve (default 10). If count is None, all posts are returned.

	offset (int) – The number of posts to offset (default 0)

	recent (bool) – Order by recent posts or not

	tag (str) – Filter by a specific tag

	user_id (str) – Filter by a specific user

	include_draft (bool) – Whether to include posts marked as draft or not

	Returns:	A list of posts, with each element a dict containing values for the following keys: (title, text, draft
post_date, last_modified_date). If count is None, then all the posts are returned.

	
static normalize_tags(tags)

	

	
save_post(title, text, user_id, tags, draft=False, post_id=None)

	Persist the blog post data. If post_id is None or post_id is invalid, the post must
be inserted into the storage. If post_id is a valid id, then the data must be updated.

	Parameters:	
	title (str) – The title of the blog post

	text (str) – The text of the blog post

	user_id (str) – The user identifier

	tags (list) – A list of tags

	draft (bool) – If the post is a draft of if needs to be published.

	post_id (int) – The post identifier. This should be None for an insert call, and a valid value for update.

	Returns:	The post_id value, in case of a successful insert or update. Return None if there were errors.

flask_blogging.views module

	
flask_blogging.views.delete(*args, **kwargs)

	

	
flask_blogging.views.editor(*args, **kwargs)

	

	
flask_blogging.views.index(count, page)

	Serves the page with a list of blog posts

	Parameters:	
	count –

	offset –

	Returns:	

	
flask_blogging.views.page_by_id(post_id, slug)

	

	
flask_blogging.views.posts_by_author(user_id, count, page)

	

	
flask_blogging.views.posts_by_tag(tag, count, page)

	

	
flask_blogging.views.recent_feed()

	

	
flask_blogging.views.sitemap()

	

flask_blogging.forms module

	
class flask_blogging.forms.BlogEditor(formdata=<class flask_wtf.form._Auto>, obj=None, prefix='', csrf_context=None, secret_key=None, csrf_enabled=None, *args, **kwargs)

	
	
draft = <UnboundField(BooleanField, ('draft',), {'default': False})>

	

	
submit = <UnboundField(SubmitField, ('submit',), {})>

	

	
tags = <UnboundField(StringField, ('tags',), {'validators': [<wtforms.validators.DataRequired object at 0x7f70d5a20050>]})>

	

	
text = <UnboundField(TextAreaField, ('text',), {'validators': [<wtforms.validators.DataRequired object at 0x7f70d5a12f90>]})>

	

	
title = <UnboundField(StringField, ('title',), {'validators': [<wtforms.validators.DataRequired object at 0x7f70d5a12f10>]})>

	

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

 Python Module Index

 f

 			

 		
 f	

 	[image: -]
 	
 flask_blogging	

 	
 	
 flask_blogging.engine	

 	
 	
 flask_blogging.forms	

 	
 	
 flask_blogging.sqlastorage	

 	
 	
 flask_blogging.storage	

 	
 	
 flask_blogging.views	

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Flask-Blogging 0.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | N
 | P
 | R
 | S
 | T
 | U

_

 	

 	__init__() (flask_blogging.engine.BloggingEngine method)

 	

 	(flask_blogging.sqlastorage.SQLAStorage method)

A

 	

 	all_extensions() (flask_blogging.processor.PostProcessor class method)

B

 	

 	BlogEditor (class in flask_blogging.forms)

 	

 	BloggingEngine (class in flask_blogging.engine)

C

 	

 	construct_url() (flask_blogging.processor.PostProcessor class method)

 	count_posts() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	create_slug() (flask_blogging.processor.PostProcessor static method)

 	custom_process() (flask_blogging.processor.PostProcessor class method)

D

 	

 	delete() (in module flask_blogging.views)

 	delete_post() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	draft (flask_blogging.forms.BlogEditor attribute)

E

 	

 	editor() (in module flask_blogging.views)

F

 	

 	flask_blogging (module)

 	flask_blogging.engine (module)

 	flask_blogging.forms (module)

 	

 	flask_blogging.sqlastorage (module)

 	flask_blogging.storage (module)

 	flask_blogging.views (module)

G

 	

 	get_post_by_id() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	

 	get_posts() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

I

 	

 	index() (in module flask_blogging.views)

 	

 	init_app() (flask_blogging.engine.BloggingEngine method)

N

 	

 	normalize_tags() (flask_blogging.storage.Storage static method)

P

 	

 	page_by_id() (in module flask_blogging.views)

 	PostProcessor (class in flask_blogging.processor)

 	posts_by_author() (in module flask_blogging.views)

 	

 	posts_by_tag() (in module flask_blogging.views)

 	process() (flask_blogging.processor.PostProcessor class method)

R

 	

 	recent_feed() (in module flask_blogging.views)

 	

 	render_text() (flask_blogging.processor.PostProcessor class method)

S

 	

 	save_post() (flask_blogging.sqlastorage.SQLAStorage method)

 	

 	(flask_blogging.storage.Storage method)

 	set_custom_extensions() (flask_blogging.processor.PostProcessor class method)

 	sitemap() (in module flask_blogging.views)

 	

 	SQLAStorage (class in flask_blogging.sqlastorage)

 	Storage (class in flask_blogging.storage)

 	submit (flask_blogging.forms.BlogEditor attribute)

T

 	

 	tags (flask_blogging.forms.BlogEditor attribute)

 	text (flask_blogging.forms.BlogEditor attribute)

 	

 	title (flask_blogging.forms.BlogEditor attribute)

U

 	

 	user_loader() (flask_blogging.engine.BloggingEngine method)

 Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

 _images/blog_page.png
@ Delete G Edit 4 New

Dirac Equation

Posted by Paul Dirac on 03 Jun, 2015

In particle physics, the Dirac equation is a refativistic wave equation derived by British physicist Paul Dirac in 1928
In its free form. or including electromagnetic interactions, it describes all spin-1/2 massive particles, for which
parity is a symmetry, such as electrons and quarks, and is consistent with both the principles of quantum
mechanics and the theory of special relativity,[1] and was the first theory to account fully for special refativity in the
‘context of quantum mechanics.

Dirac's Equation s given as:

z,)

(Bme® + c(aups + copy +n(,p,))(b(z,t):iﬁa¢()

W puvsics

0Comments test @ Gouthaman Balar... ~
@ Recommend [Share Sort by Best ~

E Start the discussion.

Be the first to comment.

_static/blog_editor.png
Title

Dirac Equation

B I H & @

- - g3

In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928. In its free form, or including
electromagnetic interactions, it describes all spin-1/2 massive particles, for
which parity is a symmetry, such as electrons and quarks, and is consistent with
both the principles of quantum mechanics and the theory of special relativity,[1]
and was the first theory to account fully for special relativity in the context of
quantum mechanics.

Dirac’s Equation is given as:
33
\left(\beta mc"2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right) \psi (x,t)

= i \hbar \frac{\partial\psi(x,t) }{\partial t}
33

Leamn more about MarkDown

Tags
PHYSICS

search.html

 Navigation

 		
 index

 		
 modules |

 		Flask-Blogging 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Gouthaman Balaraman.
 Created using Sphinx 1.3.1.

_static/down.png

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

_images/blog_editor.png
Title

Dirac Equation

B I H & @

- - g3

In particle physics, the Dirac equation is a relativistic wave equation derived by
British physicist Paul Dirac in 1928. In its free form, or including
electromagnetic interactions, it describes all spin-1/2 massive particles, for
which parity is a symmetry, such as electrons and quarks, and is consistent with
both the principles of quantum mechanics and the theory of special relativity,[1]
and was the first theory to account fully for special relativity in the context of
quantum mechanics.

Dirac’s Equation is given as:
33
\left(\beta mc"2 + c(\alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3)\right) \psi (x,t)

= i \hbar \frac{\partial\psi(x,t) }{\partial t}
33

Leamn more about MarkDown

Tags
PHYSICS

_static/blog_page.png
@ Delete G Edit 4 New

Dirac Equation

Posted by Paul Dirac on 03 Jun, 2015

In particle physics, the Dirac equation is a refativistic wave equation derived by British physicist Paul Dirac in 1928
In its free form. or including electromagnetic interactions, it describes all spin-1/2 massive particles, for which
parity is a symmetry, such as electrons and quarks, and is consistent with both the principles of quantum
mechanics and the theory of special relativity,[1] and was the first theory to account fully for special refativity in the
‘context of quantum mechanics.

Dirac's Equation s given as:

z,)

(Bme® + c(aups + copy +n(,p,))(b(z,t):iﬁa¢()

W puvsics

0Comments test @ Gouthaman Balar... ~
@ Recommend [Share Sort by Best ~

E Start the discussion.

Be the first to comment.

